bARefoot: Generating Virtual Materials using Motion Coupled Vibration in Shoes

Paul Strohmeier1, Seref Güngör2, Luis Herres3, Dennis Gudea4, Bruno Fruchard1, Jürgen Steimle1
Saarland University, Saarland Informatics Campus
Saarbrücken, Germany
1{lastname}@cs.uni-saarland.de, {s8seguen2, s8lsherr3, s8degude4}@stud.uni-saarland.de

ABSTRACT
Many features of materials can be experienced through tactile cues, even using one’s feet. For example, one can easily distinguish between moss and stone without looking at the ground. However, this type of material experience is largely not supported in AR and VR applications. We present bARefoot, a prototype shoe providing tactile impulses tightly coupled to motor actions. This enables generating virtual material experiences such as compliance, elasticity, or friction. To explore the parameter space of such sensorimotor coupled vibrations, we present a design tool enabling rapid design of virtual materials. We report initial explorations to increase understanding of how parameters can be optimized for generating compliance, and to examine the effect of dynamic parameters on material experiences. Finally, we present a series of use cases that demonstrate the potential of bARefoot for VR and AR.

Author Keywords
haptic feedback, virtual reality, augmented reality, haptic rendering, material experiences, wearable computing, shoes, body-based interaction

CCS Concepts
•Human-centered computing → Haptic devices; Human computer interaction (HCI); Empirical studies in HCI;

INTRODUCTION
We experience the world through a sensorimotor loop; to evaluate the fragility of a thin sheet of ice, for instance, one might gradually apply force to it with one foot, while balancing on the other. The ice surface might react to this continuous action with small cracks. The tactile impulses from cracks correspond precisely to changes in pressure and provide an experience of the ice’s structure and compliance. This whole process relies on the tight coupling of actions to sensory feedback of the resulting effects.

Previous work on haptic devices provides compelling experiences such as changing the friction of the surface one is walking on [41], stepping up on to, and down from virtual objects [55], or even making the wearer feel as though they are walking on different textures [75]. However, none of these systems are designed to engage directly with the sensorimotor process.

We, therefore, present bARefoot, a vibrotactile shoe prototype with high-frequency sensing and vibrotactile actuation. bARefoot closely synchronizes vibration with user actions to create virtual materials. bARefoot can be used to (a) deepen the sense of immersion in VR by, for example, allowing users to probe the strength of a thin ice layer, or feel grass leaves against their shoe when walking in grass. It can be used in (b) AR for augmenting existing materials with additional haptic cues, for example, to subtly indicate a desirable direction to walk towards or make running on artificial grounds more enjoyable. Also, it can be used to (c) expand the user’s perceptual horizon by providing embodied experiences of supplemental environmental information. For example, the level of air pollution might be conveyed as friction in the air [68].

We provide reflections on the implementation of systems which engage directly with the sensorimotor process, as well as a concrete implementation of a functional prototype. The prototype – bARefoot – has a high update rate adequate for tight sensorimotor coupling. The prototype has a separate control loop for perceptive acts and deliberate acts that allows deployment of high-resolution virtual materials, even in AR environments with poor position sensing. We complement the prototype with vibrAteRial, a design tool for creating and sharing virtual materials.

We use bARefoot and vibrAteRial for exploring the parameter space of virtual material experiences. We demonstrate that the virtual compliance illusion, as described for handheld devices [23, 34], also works for feet. We highlight that there are interactions between the number of grains used and the frequency of each grain in assessing the salience of the illusion, and that there appears to be a maximum virtual depth which can be achieved, above which the salience of the illusion is reduced. We also highlight the utility of non-static parameters for generating a variety of experiences and present four compliant materials created with vibrAteRial. Finally, we present use cases of how bARefoot might be used in Virtual and Augmented Reality settings.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2020 Copyright is held by the author/owner(s).
http://dx.doi.org/10.1145/3379337.3415828
RELATED WORK
Here we discuss haptic perception – highlighting that tight sensorimotor coupling is required for most material experiences – and examples of devices that use such coupling. We then discuss work on haptic shoes, virtual compliance, design tools, and design to contextualize our contributions.

Active Perception & Haptic Rendering Devices
When lifting an object, the fingertips continuously react and adapt to its material properties. Tangential force in reaction to lifting the object provides information about an object’s weight [31]. Finger deformation in reaction to applied force is used to infer compliance [10]. Vibrations caused by micro-movements over the surface of the object create an experience of texture [9]. These material experiences are generally mediated by pacinian corpuscles, which are nerve endings in the skin sensitive to vibration [8]. Consequently, many of these experiences can be rendered by providing tactile impulses, closely coupled to human actions [68].

Systems based on tight coupling between actions and corresponding tactile impulses have been used in haptics research. Examples include a haptic controller by Yao et al. which is vibrated in such a way that a rolling stone inside the controller is experienced [89], or moving a pen over a flat surface which provides the experience of a pre-recorded texture through vibration [12, 53]. The experience of texture, however, does not require such recordings – simple grain-based, parametric approaches have also shown success [70].

This approach is finding application in HCI and VR research. For example, Heo presented a VR controller which provides the experience as if it was bent or twisted, by providing grain-based feedback relative to the force exerted on it [23]. Lee et al. presented TORC, a device that supports high dexterity finger interactions with virtual objects [36]. Siu demonstrates similar principles in a VR controller which allows blind users to explore VR with a cane [66]. Haptic feedback with tight sensorimotor loops is not limited to VR devices. For example, ReFlex, a bendable smartphone, augments the bending experience with motion-coupled feedback [69].

Haptic Rendering and Haptic Shoes
Studies of pacinian corpuscles in human feet indicate that their function and their frequency response is very similar to how they function in hands [27]. Therefore, the haptic illusions described above should also transfer to feet. However, we are not aware of systems that take advantage of this.

Instead, many systems rely on grounded kinematic chains, for example, by providing fully robotic systems that move the entire body and can simulate running or even falling [56]. Other approaches usually focus on specific experiences, for example, Level-Ups can provide the experience of stepping up on to an elevated object [55]. A more subtle approach to grounded systems are shape-changing insoles, which, inspired by soft-robotics, use air-filled bladders to render terrain [82, 83]. Yet another approach are variable friction soles, where surface features are communicated through changes in perceived friction of the ground [28, 41]. These have also been shown useful in an HCI context, for target acquisition [26].

The above approaches typically involve considerable engineering challenges and cost (cf [45]). A simpler alternative consists of augmenting shoes using vibrotactile devices. Here the research focus has primarily been on vibration as a communication device. Examples include communicating language [24] or stock market movements [15]. Other uses include feedback for menu selection [6], navigation instructions [54], and to induce walking rhythms [84]. As these devices do not have any feedback loop for controlling the vibration, they cannot be used for conveying material experiences.

An interesting alternative has been the use of audio for augmenting the footstep experience. Tajadura-Jiménez demonstrated that modifying the sound produced by one’s footstep can change the perceived body image, and even influence one’s gait [72]. A similar approach is used in a series of studies that use concurrent haptic and acoustic feedback: Visell augmented floors, using vibration generated from audio recordings [79] and Turchet et al. pre-recorded footsteps and presented an algorithm for dynamically playing these back, based on foot-strike intensity [75]. This approach was then used to increase realism in walking over virtual surfaces, though some participants found the experience unpleasant [74]. A related preliminary study by Nordahl et al. [45] explored the same concept using audio-synthesis. They conclude that the auditory channel is more useful than the haptic channel for discriminating between materials. This result is surprising, as research shows that we are not very good at identifying materials through sound [19].

An explanation for the poor performance of the haptic conditions could be that, in the author’s own words, “sensorimotor coupling was inexistent” [45]. This leads to an experience as if another person was walking for the participant. We expand upon the work by Nordahl and Turchet by providing haptic feedback with full sensorimotor coupling.

Compliance Illusions
Amongst the first work concerned with designing compliance experiences are mechanical push-buttons with tunable force-pressure profiles by Doerrer [14] and more recent follow-up work by Liao [37, 38]. These prototypes literally change the compliance and haptic properties of pushing a button by a smart combination of mechanical and vibrotactile actuation.

To change the experience of compliance, however, one need not literally change the compliance of a material. Prototypes by Kildal [34] and Lee [35] demonstrate that by providing discrete tactile impulses at fixed changes in pressure exerted, an illusion of compliance can be achieved. Lee also demonstrated that such virtual compliance assists the force control of repetition tasks [3] and lowers physical demand and frustration [22] compared to using a rigid force input device. Similar principles were also deployed at a larger scale on floor surfaces by Visell for displaying compliance and textures [80].

We extend upon the state of the art by demonstrating that this illusion also holds for tactile exploration using feet. We also explore the parameter space and highlight the utility of distinguishing between the salience of the illusion and the accompanying quality.
Designing Haptic Feedback

Schneider et al. provide an overview of the field of haptic experience design (HaXD) [58], highlighting hurdles and opportunities of the field. Schneider suggests using visual or audio proxies for speeding up design cycles. Schneider and colleagues present various design tools [59] that support sketching [60] and leverage visual and acoustic proxies for designing [61] as well as low-fi vibrotactile representations [62]. An orthogonal approach is exemplified by Pescara et al. who explore the use of evolutionary [50] and genetic algorithms [49] for personalizing vibrotactile patterns, in an iterative process.

Schneider et al. also highlight that problems of HaXD include the difficulty to demonstrate haptic experiences to others. This difficulty, together with the high level of vertical integration (hardware, software, design, psychology) also makes it a challenge for collaborations [58]. Many of the aforementioned design tools, also attempt to address this issue, for example by providing software libraries [63], plugins [59], or authoring tools [81] for creating, organizing, and sharing experiences.

As existing solutions design haptic feedback in a temporal domain, they are incompatible with a system such as bAREfoot, for which haptic experiences unfold along a dimension of human action. We, therefore, contribute to this existing body of work by providing a design tool for creating and sharing such action-coupled vibrotactile patterns.

Designing Materials and Shoes

The concept of material experience is also used within design research. Giacardi and Karana highlight that material experiences are the result of “mutual interaction between people and objects” [18]. This is reflected in research methods that emphasize the lived, subjective experience of the design-process [73] as well as approaches that consider the material as a co-performer of the interaction [33].

Such considerations have also been applied to the design of shoes. Nachtigall et al. [43] use a research through design approach to explore how individualized shoes might be created, focusing on the relationship between data and materials. Amorim et al. [5] present a concrete case of using 3D metamaterial structures for creating personalized shoe soles.

Our work shows – empirically – that for designing a material experience, it can be practical to focus on the desired outcome of the “mutual interaction” between user and material, rather than the desired material alone.

BAREFOOT: DESIGN CONSIDERATIONS

Here we describe theoretical considerations that influenced our design choices when implementing bAREfoot. This section contributes to the following ideas: We suggest explicitly distinguishing between deliberate and perceptive acts. We suggest that a wide range of kinesthetic illusions can be created by adding tactile feedback to perceptive acts. The type of experiences which can be created can be systematically explained by the type of perceptive act that is modified: adding tactile feedback to isometric acts is experienced as additional friction or counterforce [68], while adding tactile feedback to isotonic acts is experienced as additional compliance or counterforce [44]. We refer to this as a deliberate act (Figure 1a).

Embedded within this deliberate act is a loop of perceptive acts: While pushing against the switch, the user perceives its friction, the force required for it to flip, and other properties such as the texture of its surface. These material properties are perceived through interaction between changes in applied force, and a corresponding reaction of the switch and deformation of the fingertips (Figure 1b). These tightly coupled sensorimotor loops continuously occur when interacting with materials. Work such as the dynamic buttons by Liao et al. [38] caters to these sensorimotor loops, while prototypes such as PseudoBend [23] or ReFlex [69] leverage such sensorimotor coupling for creating haptic illusions. When designing for such perceptive acts, the literature suggests that tight temporal coupling is essential [86]. Participants have reported experiencing the effect of latency as low as ~ 25 ms [68] and studies on musicians suggest that even ~ 10 ms delay might interfere with the perceptive act [39].

Deliberate acts and perceptive acts complement each other. Walking on a gravel path in the woods, one might deliberately step off the path on to mossy grass. One might then perform a series of perceptive acts, as the force of the shoe and the counterforce of the moss provide a rich experience of the complex surface. Similarly, we suggest that interactive technology might consider each interaction loop separately. If the above example happened in a virtual world, it would be sufficient to update which material to render (gravel path or mossy grass) at less than 60Hz (cf. [31]), while the material interactions (probing of the mossy grass) would require an update rate of well over 100Hz (cf. [39]).
Considering the Breadth of Motor Acts

Often vibrotactile rendering systems limit their design to either isotonic (e.g., [12, 53, 68]) or isometric acts (e.g., [23, 34, 35]). We wish to highlight that these two design approaches both share augmenting perceptive acts with tactile cues as their underlying mechanism. The resulting experiences share a certain symmetry with the perceptive acts: Systems, where the user can freely move, are experienced as restricting movement if tactile cues are added, for example, users might feel friction, where there is none [68]. Systems where the user’s range of motion is constrained provide an experience of movement if tactile cues are added, for example users might feel compliance, even though the material is rigid [34].

In the context of designing for foot-based material experiences, this provides us with a range of options to consider. Human gait consists of two components: an isotonic swing phase, where the foot is lifted off the ground, which might be augmented with friction or resistance [68] and an isometric stance phase, where the foot is in contact with the ground, which might be augmented with additional experiences of motion [23, 34] (see Figure 2). Additionally, when lifting and placing the foot, these types of motion might overlap, and when stepping on many materials, elastic interaction occurs which includes both isometric and isotonic components (cf. [69, 91]).

We suggest that general purpose systems for creating virtual material experiences should be able to measure and respond to both isotonic and isometric motion, providing tactile impulses at fixed measure in either dimension (See Figure 2). In this paper, we focus on the compliance illusion. The reason for doing so is that it is well understood in other domains [3, 34, 35], and therefore an ideal first step in exploring this space.

Providing Knowledge of Performance

In the context of motor learning, a distinction is commonly made between inherent and augmented feedback. Inherent feedback is intrinsic to the activity which is performed, while augmented feedback is information that is provided externally. Inherent feedback is naturally concurrent to the action, while augmented feedback can be either concurrent or be provided terminally after the action is completed [57].

Feedback can provide knowledge of the result (KR) or knowledge of performance (KP) of an action. Knowledge of results describes the outcome (you hit the target), while knowledge of performance instead describes how the task was performed (your knees were bent) [57].

Typically, augmented feedback is provided verbally, terminally, and provides information about results [57]. In contrast, the methods we suggest here are designed to blend in with the intrinsic kinaesthetic feedback and provide concurrent knowledge of performance.

Parameterizing Haptic Experiences

It is relatively trivial to explain what combination of colors makes something appear green. Making similar statements about material experiences is difficult. While work which has prerecorded material properties [53, 74] has been able to reproduce these with a high degree of realism, these explorations do not provide any information on why something feels the way it does. Another common approach does not focus on realism but instead explores how tactile parameters map to haptic experiences [29, 70]. This second approach has the potential not only to create complex material experiences, but also to help us understand which parameters cause this experience, similar to knowing which combination of colors creates green.

We suggest focusing on the parameterized approach for several reasons. Not only does it have the potential to facilitate a better understanding of haptic perception, it also facilitates communicating material experiences. The ability to describe a material experience with as few parameters as possible might support simple standardized encoding for reproducing and sharing them. Understanding how the parameters of this encoding affect the experience would also ease the augmentation of visual virtual worlds with material experiences, as a visual texture might automatically generate the corresponding parameters.

IMPLEMENTATION

We present a haptic shoe – bARfoot – with methods for generating virtual materials. We demonstrate that bARfoot can complement existing VR and AR technologies by presenting an example of bARfoot integrated into a Unity application. To facilitate the design of virtual materials, we also provide a flexible design tool called vibrAteRial.

bARfoot

Based on our design considerations, we decided that all aspects of generating textures should happen in the firmware.
of the haptic shoe itself. By having the sensing and virtual material generating functions as part of a high-frequency embedded system, latency can be minimized and sampling rates maximized, to optimally respond to high-frequency perceptive acts. Each bARefoot, both left and right, is fully operational on its own. It can provide a virtual material experience without requiring communication with any other device. Here we describe its electrical implementation, hardware, and sensor processing setup.

Hardware

In selecting sensors and micro-controllers, we were primarily interested in ensuring fast update rates. The electronics of bARefoot were controlled by an ESP-32. We chose to use the ESP-32 as it can operate at up to 240 MHz and because it supports wireless communication. For easier development, we used the ESP-32 Dev Kit C V4 by AZ-Delivery.

We used two high-resolution sensors: a pressure sensor for measuring the force applied to the ground during the stance phase of walking or when probing the ground, and an inertial measurement unit (IMU) for measuring foot-motion during the swing phase. The pressure sensor was custom made of Eeonxy non-woven piezo-resistive fabric (cf. [25]), so it could be easily integrated into the sole of the shoe. The update rate is limited to the speed of the ADC conversion which exceeds 25k conversions per second. As IMU we chose the LIS3MDL by Pololu which can provide update rates up to 1 kHz. We measured the time from receiving a signal at the ADC to providing a corresponding output on the DAC to be <0.16ms.

The analog output of the ESP-32 was connected to a class D amplifier that received external power from phone-charging power-banks, carried in the user’s pant-pockets. The amplifier was used for driving four Taptic Engines, connected in parallel. Please refer to Figure 3 for a photograph of bARefoot and Figure 4 for details of how components connect.

We designed the bARefoot prototype using a sandal to easily adapt to a wide range of foot sizes and make modifications of the shoe, such as integrating components in the sole, easier (Figure 3). It is to be noted, however, the concept of bARefoot does not depend on a specific form factor.

Sensor Processing

As any jitter in the input signal would negatively input sensorimotor coupling, we paid special attention to stabilizing the signal measured from the pressure sensor. We first used a running median of seven values to remove outliers. To smoothen the data, we then applied a low-pass filter (cf. [2]).

To ensure that idiosyncrasies of the non-linear response of the piezo-resistive material would not influence the material experience, we linearized the sensor output: We first measured the sensor response to known forces, calculated the function which best fits the resulting curve, and then multiplied the measured values by the inverse of that function.

To optimize IMU readings, each accelerometer and IMU were calibrated in a resting state. Hard and soft iron calibration was conducted on the magnetometer, once mounted to the shoe, using the Teensy Motion Sensor Calibration tool. The readings were fused using the NXP sensor-fusion algorithm as implemented in the NXPMotionSense Arduino library. The resulting signal can be used for sensations previously described as *rotation* condition by Strohmeier et al. [68, 67]. As these sensations are less well understood than the compliance illusion, we chose to not focus on these for the initial presentation of bARefoot but intend to revisit these in future work.

Unity Integration

While bARefoot has access to all information for rendering a virtual material experience, it does not have the information required for switching between corresponding virtual materials, as the user steps from virtual grass to virtual stone. Such information needs to be provided by an application which tracks deliberate acts.

For VR applications, this information is provided by a custom Unity application. HTC Vive position trackers are mounted on bARefoot. Knowing the position of each foot in the virtual world, one can identify which virtual material the shoe should interact with and send the corresponding settings to bARefoot. Consequently, when the user moves from one virtual surface to another in VR, the corresponding virtual texture will also switch. It should be noted that, as the virtual material is generated by each bARefoot individually, potential latency between bARefoot and Unity does not impact the performance of the shoe (Figure 5). Using a Serial connect to bARefoot, we estimate the system latency to range between 10.7 ms and 21.8 ms.

1 all code is available at vibraterial.github.io
This overall architecture matches the design considerations of separating deliberate acts (which are handled by Unity) from perceptive acts (which are handled in high frequency by bAREfoot). This allows evaluating one aspect of the system without worrying about the other. It is also beneficial for wireless communication as we need not worry about jitter. Finally, it scales well to an AR context – even if position information is not available in high resolution, bAREfoot can still provide high-resolution material experiences2.

Generating Virtual Materials

To simulate virtual material, discrete pressure values are mapped to bursts – or grains – of vibration. For example, if we define 128 grains over the entire range of available pressure, as the user slowly increases the pressure, individual impulses occur at discrete pressure levels. When hitting the halfway mark, the user will have experienced 64 bursts. When releasing the pressure again, the user re-encounters the grains at the same pressure levels. Different virtual materials can be provided by varying the number of grains, or the properties of the individual grains.

Each grain is created as a sine-wave burst. bAREfoot supports manipulating the frequency, duration, and amplitude of individual grains. For the purpose of making each grain as short as possible, we fixed their duration to their wavelength. This effectively provides us with two parameters that manipulate grains: frequency and amplitude. We report frequency in Hz and amplitude in the percentage of the maximum output of the amplifier.

In addition to manipulating these parameters, one can adjust the granularity of a virtual material, by either modifying the total number of grains or changing the way grains relate to the user’s action: Instead of being linearly distributed over the entire range of pressure, for example, one can skew their placement to one end, or place them randomly. Similarly, the frequency and amplitude of individual grains can also be adjusted.

Designing Experiences

Design tools for creating vibrotactile patterns are an active research area [49, 60], with strong examples of intuitive haptic editors, such as Macaron [61]. All existing editors provide tools for manipulating haptic parameters over time. These are not applicable to bAREfoot and related sensorimotor coupled haptic feedback systems, as their relevant dimension is not time, but human action.

To design vibrotactile patterns for bAREfoot, we therefore designed a custom tool – vibrAteRial (Figure 6). It is designed for freely exploring the parameters supported by bAREfoot. vibrAteRial supports simple and rapid creation of custom vibrotactile patterns. We provide multi-modal representations of these patterns: they are immediately visually represented in the tool, they can be sonified, and they can be sent to bAREfoot for tactile exploration.

Creating Experiences

Typically, a user might first select the overall number of grains using a slider (Figure 6a). The distribution of grains and their corresponding frequency and amplitude can then be individually manipulated. Initially one can input a function the parameter should follow, which is then automatically scaled to the selected value range (Figure 6b). This function can be also reflected along the diagonal axis, for creating the inverse effect. One can then add randomness with the noise tool. Once the general parameters of the experience are satisfactory, individual grains can be directly manipulated, by moving them to their desired location in the corresponding graph.

Exploring and Sharing Experiences

vibrAteRial uses a standardized encoding of the vibrotactile patterns supported by bAREfoot. It allows saving multiple patterns and quickly switching between them, for quick comparisons (Figure 6c). Vibrotactile patterns can also be exported and saved as a JSON file, for remote collaboration between researchers2. Using vibrAteRial one can load a pattern designed by a colleague, visually inspect it, listen to a sonification of it, or upload it to a bAREfoot for tactile exploration.

24 ms input delay of Vive controller [1], up to 11.11 ms delay from the game engine (updated at 90 Hz), 6.5 ms measured delay for sending a texture via Serial, < 0.16 ms measured until the DAC is pulled high.

2This was put to a practical test in writing this paper, as none of the authors were co-located due to the ongoing COVID-19 situation.

EXPLORATIONS OF THE PARAMETER SPACE

These explorations were conducted by four of the authors. Using experts as participants has various advantages: Reflecting on haptic experiences is difficult as we do not share a strong vocabulary describing these (cf. [46]). Psychophysics experiments also require training, focus, and concentration. The quality of the resulting data depends on a large part on the ability of the participant to reflect on their experience (cf. [51]). Using experts who are familiar with psychophysical scaling tasks, made it easier to conduct initial tests successfully.

The authors performed the experiments in their homes and were unable to communicate during the tasks. We do not believe that any systematic bias was inserted by desirability effects, as none of the authors is particularly invested in any specific parameter or its level. Results were only shared once all authors had completed the experiment. The results are primarily intended as a proof of concept, to demonstrate that this type of experiment can be conducted with bARefoot. While we believe that the trends we found will generalize, we caution on any interpretations beyond, and explicitly refrain from hypothesis testing.

Exploration 1 - Linear and Constant Parameters

The purpose of exploration 1 is to better understand how to optimize the parameters for generating an experience of compliance. The compliance illusion itself is well established in the literature [34, 35]. So far, however, there is little guidance on how to specifically design the illusion to optimize its effect. Specifically, we were interested in understanding the effects of varying the number of pulses, and whether these were influenced by frequency.

Independent Variables

In **task 1**, the frequency was fixed at 220 Hz (corresponding to the musical tone A3) and users compared 10 levels of granularity (5, 8, 13, 20, 29, 40, 53, 68, 85, and 104 grains).

In **task 2**, we explored if granularity interacts with frequency. We combined four levels of frequency (110 Hz – A2, 175 Hz – F3, 277 Hz – C#3, and 440 Hz – A3) and five levels of granularity (5, 13, 29, 53, and 85 grains) in a fully factorial design.

Each grain used a pulse-length corresponding to its wavelength. To accommodate the effect of pacinian frequency response (cf. [78]), and potential signal attenuation by the material of the shoe, each participant individually calibrated each frequency, so that they were all experienced as equally strong. We report the means and standard deviations of these calibrations: 110 Hz 3.3% (1.41) | 175 Hz 3.5% (1.73) | 277 Hz 7.5% (2.38) | 440 Hz 29.35% (12.5).

We use a within-subject design. Each task consisted of blocks that include all combinations of the independent variables. We randomize these combinations within each block. Each task starts with a training block and is followed by 3 blocks in task 1 and 4 blocks in task 2. It took approximately an hour to complete each task.

Data Processing & Visualization

Following a standard magnitude estimation procedure [17], we collected three estimates for each stimulus – the **Salience** of the illusion (how clearly can compliance be felt?), and two characteristics of the quality of compliance: **Continuity** (is the experience holistic, or is it separated in discrete sub-experiences?) and **Depth** (how far does the foot ‘sink’). Estimates were input using three dynamic sliders (cf. [40]).

Results

By collecting estimates of salience separately from estimates of quality, we can consider the questions of how well the illusion of compliance works separately from descriptions of what the compliant sensation felt like. Interestingly we found that, in both tasks, the overall salience and the experience of depth or continuity only poorly correlate.

Task 1: Looking at **salience** (Figure 7, left), we found that stimuli spanning between 13 and 53 grains were rated highest. Stimuli with more grains were generally rated lowest. A possible explanation for this is that because the occurrence of grains was so frequent, a fast motion would truncate grains, injecting higher frequency artifacts into the experience, which were only indirectly coupled to pressure and therefore detracted from the experience. There was large variability in the rating of stimuli with very few grains. This can be explained by the observation that the illusion with few grains did work well (similarly to the single-grain depth illusions used in some contemporary devices), but that it was, compared to the satisfying experience of the higher-rated stimuli, relatively disappointing.

We found that both the experience of **depth** (Figure 7, middle) and **continuity** (Figure 7, right) increased with the number of grains, but only to about 53 grains. Above that, adding grains did not appear to further augment the experience. In fact, for continuity, some felt that more grains lead to discontinuity. The discrepancy between our results for continuity can be explained by how we engaged with the device – by
moving deliberately slowly, one can avoid the problems of high granularity explained before.

Task 2: We now discuss the influence of frequency of the individual grains. The heat-maps shown in Figure 9 suggests that there are interaction effects between the number of grains and the frequency. The heat-map for salience shows the least variability in average ratings, however, the combinations with the highest ratings typically had either 29 grains or 277 Hz. Combining low frequency with high granularity had a negative impact on the illusion.

The results for depth (Figure 9, bottom left) are in line with our suspicion that a high number of grains might be rated negatively due to the truncating of grains. We see that for 85 grains, the rating radically drops for the 110 Hz condition, which is what we would expect. Looking at continuity (Figure 9, bottom right), it also appears that higher frequencies make the individual pulses more prominent. As the number of grains increases, grains with higher frequencies appear to harmonize better, resulting in more continuous experiences.

It should be highlighted that these estimates only describe the experience relative to one another and that it is not possible to draw absolute conclusions from this type of magnitude estimation data [17]. In other words, looking at the salience measures, the low ratings of both low and high number of grains does not mean that these settings worked badly, it merely means that the others worked better. Conversely, it also means that high ratings solely highlight better illusions than the others.

Exploration 2 - Non-constant parameters

Next, we explore the effects of non-constant parameters. With non-constant parameters, we refer to parameters which change from grain to grain, either randomly (cf. [34]), or as a function of applied pressure. While the previous exploration was based on a previously established illusion, the opportunities of non-constant parameters have so far barely been explored. As an initial sampling of the parameter-space, we explore concave and convex granularity, random and constant frequency, as well as rising and falling amplitude.

Comparisons

We made three comparisons to better understand the shape of curve (convex/downward or concave/upward), randomness, and direction (rising or falling) of varying parameters. We presented these comparisons to participants in both orders (A:B and B:A) and repeated each order 3 times, for a total of 18 comparisons. The comparisons were presented in random order, blocked by repetition. For each comparison participants were asked to name 3 words which best described the difference between the two stimuli and indicate for which of the two stimuli the description applied more. Details of the virtual materials will be described per comparison. We used 25 linearly distributed grains, 200 Hz, and 5% amplitude if not otherwise specified. Screenshots of exact settings are available in the appendix.

We removed duplicate and opposite terms and then grouped the reported words by normative judgments (Blue, materials and textures (Green), and reaction of material (Red) – See Figure 9.

Convex vs Concave Granularity:

For comparing curvature, we changed the slope of how grains are distributed. In the concave condition, the grains follow a function of x^2. The convex condition mirrors this curve along its linear axis. The result is that for the convex condition the grains arise closer to each other early on in the movement, which most likely explains that it was experienced to be more reactive (sensitive, closer) than the concave condition. In the concave condition, the initial grains are rather sparse and only become more frequent with high pressure. This was experienced as dull or muted (see Figure 9, top).
CONCAVE GRANULARITY ─► CONVEX GRANULARITY
► rigid, rocky
► dull, muted, subtle

RANDOM FREQUENCY ─► CONSTANT FREQUENCY
► complex, uncomfortable
► granular, pebbles, rigid, rocky, rough
► crunchy, dull, sticky, stuttering

RISING AMPLITUDE ─► FALLING AMPLITUDE
► rich
► elastic, rigid, sandy, soft, strong
► dull

Figure 9. Terms used to describe each virtual material. We categorized these according to normative judgments (blue), materials, and textures (green), or the reaction of the material (red).

Random vs Constant Frequency:
Here we were interested to compare constant and random parameters. We focused on frequency by comparing a constant frequency of 200Hz to random frequencies ranging between 0Hz and 590Hz. The effect was a somewhat unpredictable experience for the random condition, which was slightly uncomfortable, compared to the smooth predictable behavior of the constant frequency. However, the random condition also evoked more natural experiences, while the fixed condition was described as a comparatively artificial experience with springy and bouncy properties (see Figure 9, middle).

Rising vs Falling Amplitude:
Finally, we compared the effect of increasing to decreasing a parameter coupled to user action. We chose to focus on the amplitude and presented a condition where it rises to a comfortable level and then falls. We found that the rising amplitude felt more reactive (alive, immediate) than the rising amplitude, most likely due to the more prominent grains at the start of the movement. However, the rising amplitude was also associated with a richer experience, while the material experience of falling amplitude was described as cheap (see Figure 9, bottom).

This second exploration highlights that not only the current parameters shape the material experience. The dynamics of how parameters are changed as a function of user input, have a substantially influence on the experience as well.

Exploration 3 - Design of Virtual Materials
To get a better impression of the materials which might be created and to explore if our editing tool provided us with the ability to design materials to our satisfaction, we spent time testing and sharing materials between the authors. Our goal was to design novel material experiences to demonstrate the breadth of experiences bARefoot can create. Here we provide a sampling of materials.

Foam
150 Grains: (± 3), Freq: 0, Amp: 7
This material experience was described by its designer as “[moving] through the foam with your hand” when taking a bath and “every little bubble [is] bursting”. This feeling of very light grains was likely produced by the combination of a high number of grains coupled with low amplitude levels. This follows our findings from exploration 2 that a falling amplitude evokes fragile materials (Figure 9).

Air bubble
12 Grains: (± 3), Freq: 600, Amp: 10
This material experience was described by its designer as “a thin air bubble that one could easily pop”. The granularity is likely the main factor in this feeling as grains occur more frequently as the pressure increases. The rising amplitude accentuates this feeling of “popping” when reaching the maximum pressure level. The low number of grains might explain why this material felt “thin”.

Crunchy
16 Grains: (± 3), Freq: 740, Amp: 18
(± 5)
The primary asset of this material is to feel “natural in the sense that I really feel the material changing below my foot”. When pressing against the ground, this experience is comparable to “grains compressing against each other like [stepping on] snow”. This feeling of naturalness is likely produced by the noise added to the granularity and amplitude, as we observed with the random frequency (see Figure 9).

UI mechanism
30 Grains: (± 4)
This material is peculiar as its designer reported “an interesting sense of agency”. The designer felt in control of the material like controlling the foot pedals of a car. This material experience felt artificial and might be used to leverage haptic UI mechanisms. This feeling of artificiality was likely produced by the mix of high frequencies with random amplitude levels.

REFLECTIONS ON USE CASES
Foot-Based 3D Button
While foot-based user interfaces have been explored extensively in HCI [77], they often rely on visual feedback [7] or vibrotactile notifications [6], providing knowledge of the outcome of an interaction. Using bARefoot one might also provide tactile guidance or feedback of performance, as the interaction unfolds (cf. [57]). For example, we propose adding an experience of compliance to pressure based interaction:

When interacting with a virtual 3D button on the ground, the pressure sensitivity of the shoe can be used to infer how far the button is pressed, and the virtual compliance sensation can provide corresponding feedback to the user, augmenting the kinaesthetic perception of their action (Figure 10).

The results of our explorations suggest one could adapt the depth of the virtual material to generate various categories

Figure 10. Foot-based 3D button. bARefoot creates an experience of compliance at the position of the button to create the illusion of the foot pushing the button down.
of buttons. Furthermore, the input mapping could change to span from a two-state button to a value picker to select multiple entries, following similar techniques designed for hand interactions [11, 52]. Using bursts in the amplitude of given grains would serve as landmarks to facilitate selecting entries, as it is often used in with dials in cars. Related research suggests that such virtual materials might improve control in repeating tasks [22].

Improving Immersion in Virtual Environments

Immersion in virtual environments often relies on visual and auditory cues which might be extended with tactile information. This has led to a breadth of research prototypes for providing haptic feedback in VR, usually in the form of handheld controllers [64, 85, 90]. Such tactile interactions, however, are also important for foot-based interaction:

In Figure 11, the user walks through a pier made of old wood planks in a virtual environment. Visually, the user cannot clearly identify if the plank will support their weight, but they can haptically probe each plank to evaluate its strength before stepping on it. barefoot also enables augmenting both the swing and stance phases of walking inside virtual environments. For instance, when the user walks on grass, one can design a material experience comparable to stepping on soft earth for the stance phase and design a material experience comparable to hitting grass leaves with the foot for the swing phase (see Figure 12).

Augmenting Running

HCI research has started to address both the efficacy of running exercise [42] as well as the immersion and enjoyment of the process [4]. A review by Jensen and Mueller [30] highlights that there is a lack of technologies that provide complex technique-related feedback to the runner in an assertive manner. This might be addressed with bArfoot by providing concurrent feedback on running performance (cf. [57]). Additionally, changing materials properties of the ground might be used as a storytelling tool [88], or enhance otherwise mundane running experiences, such as running on a treadmill.

Subtle notifications for Embodied Experiences

One can also use the material experiences generated by bArfoot as means to convey subtle, non-disruptive information. This approach leverages the fact that tactile information processed by the feet is rarely the focus of one’s attention, but strong stimuli can call for attention (e.g., stepping on something soft while walking on concrete). One could map information such as the remaining distance to walk to a given destination, or subtle navigation cues [16] to the material experience of walking.

One might also map environmental information that the human body usually cannot perceive to material experiences. For example, bArfoot might convey ambient pollution levels [48] or WiFi strength [20] as friction in the air, by providing grains coupled to isotonic movement of the shoe (cf. [68]).

FUTURE WORK

Going forward, an important extension of this work will be Non-Symmetrical Granularity: i.e., one might provide different experiences for pressing and releasing pressure. An obvious parallel from the natural environment is crushing a fragile object by stepping on it. We would also welcome further exploration of the Frequency Range. Based on our initial results, it would be especially interesting to explore the high continuity experienced with low frequencies and the interaction between frequency and granularity further. In this context, it would be prudent to also explore psychophysical scaling methods [32] and consider interactions between pressure and perception of tactile cues [47]. Also, while qualitative user experience has been the focus of previous work [68], similar qualitative inquiry is also needed for optimizing realism. Realism could, for example, be further strengthened by providing multimodal feedback. Combinations of tactile with acoustic [75] or visual [13] feedback might greatly enhance realism when designing real-world applications using bArfoot. Finally, we would like to see the approach presented in this paper used with other technologies such as on-body feedback devices [21], electrotactile epidermal skins [87], or vibrotactile implants [71].

CONCLUSION

We presented bArfoot, a novel prototype shoe for providing motion coupled vibration. This enables creating virtual materials. We highlight the potential of motion coupled vibration to create sensations similar to compliance, elasticity, and other material experiences. We also presented vibrAteRial, a design tool for exploring novel material experiences and creating virtual materials. Our initial explorations indicate that salience and qualia of the compliance illusion can be separated and that salience, depth and continuity of the illusion are influenced by interaction effects between granularity and frequency. We show that the dynamics of a parameter as a function of user input also shape the material experience. Finally we present example materials and use cases to demonstrate how bArfoot can improve interactions.
ACKNOWLEDGEMENTS
This project received funding from the European Research Council (ERC StG Interactive Skin 714797). Many ideas presented here were initially explored during Paul’s time at the University of Copenhagen and his stay with the MIT Media Lab’s Responsive Environments group. Paul is grateful for the support he received from the HCC Section and thanks Resenv Lab’s Responsive Environments group. Paul is grateful for the University of Copenhagen and his stay with the MIT Media Lab.”

REFERENCES

http://dx.doi.org/10.1145/3296687.3313255

http://dx.doi.org/10.1145/3332165.3347941

http://dx.doi.org/10.1145/2582051.2582060

http://dx.doi.org/10.1145/3313831.3376841

http://dx.doi.org/10.1145/3025453.3025625

http://dx.doi.org/10.1007/978-1-4615-0713-0_14

http://dx.doi.org/10.1145/3173574.3173910

http://dx.doi.org/10.1145/2686612.2686696

http://dx.doi.org/10.1145/2901790.2901999

http://dx.doi.org/10.1145/1891903.1891931

http://dx.doi.org/10.1145/2501988.2502041

http://dx.doi.org/10.1145/3296605.3308301

