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Figure 1: Grasping Microgestures enable direct and subtle interactions with computer systems while holding an everyday
object. This paper presents empirical results from an elicitation study with varied objects, investigating the effect of grasp
and object size on user’s choice of microgestures, preferred locations, and fingers used.

ABSTRACT
Single-hand microgestures have been recognized for their
potential to support direct and subtle interactions. While
pioneering work has investigated sensing techniques and
presented first sets of intuitive gestures, we still lack a system-
atic understanding of the complex relationship between mi-
crogestures and various types of grasps. This paper presents
results from a user elicitation study of microgestures that are
performed while the user is holding an object. We present
an analysis of over 2,400 microgestures performed by 20
participants, using six different types of grasp and a total of
12 representative handheld objects of varied geometries and
size. We expand the existing elicitation method by proposing
statistical clustering on the elicited gestures. We contribute
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detailed results on how grasps and object geometries affect
single-hand microgestures, preferred locations, and fingers
used. We also present consolidated gesture sets for different
grasps and object size. From our findings, we derive recom-
mendations for the design of microgestures compatible with
a large variety of handheld objects.
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1 INTRODUCTION
Gestural user interfaces for computing devices most com-
monly require the user to have at least one hand free for
interacting with the device, to be able to move a mouse,
touch a screen or perform mid-air gestures. In contrast, it
remains difficult to interact with computing devices when
both of the user’s hands are occupied holding everyday ob-
jects. These situations arise in many contexts, for instance
while working with tools in the kitchen, workshop, or office,
or while carrying bags for shopping or traveling.

Advances in miniaturized, embedded or wearable sensors
now open up opportunities for new forms of gestural in-
put with busy hands: subtle and rapid microgestures [3]
performed using a single hand. These one-handed micro-
gestures can be performed along with a primary task with
a handheld object, as they require only subtle finger move-
ments and interrupt the primary task only for a few seconds.
We envision such gestures to be useful for controlling com-
puting devices while using conventional, passive handheld
objects. Some example use cases are shown in Figure 1: for
instance, the resulting gestures could be used to access a user
manual while holding workshop tools, to control a video tu-
torial about sewing while holding a needle, or to intuitively
switch between drawing tools while holding a pencil. We
also believe these microgestures offer powerful means for
interacting with new types of ubiquitous computing devices.

Microgestures have already proven to be useful for direct
and subtle interaction with ubiquitous computing systems
[8, 20, 27]. Prior work has systematically investigated single-
hand microgestures in a hands-free context [7]. It is to be
expected, however, that hands-free microgestures are consid-
erably different from gestures that can be performed when
hands are busy. The number of fingers needed for holding
or manipulating the handheld object largely constrains the
set of possible microgestures. Comparably little prior work
has investigated this setting. Pioneering work by Wolf et
al. [50] has contributed an early investigation with 3 objects,
while other work has investigated gestures on self-sustained
objects, such as the steering wheel [2]. However, we still
lack a systematic investigation of a more comprehensive set
of object geometries and their respective grasps to inves-
tigate the complex relationship between handheld objects
and microgestures. It remains an open question as to what
are appropriate interactions from an end user’s perspective
when hands are busy holding an object.

In this paper, we present results from an empirical user
study with 20 participants that elicited microgestures while
the hand is holding an object. We call those “grasping micro-
gestures”. It is the first such study that systematically com-
pares a large set of grasps and handheld objects of various
geometries and size. Using a taxonomy of six different grasps

and two object sizes, we selected 12 representative handheld
objects from various domains. Our study employed the user
elicitation method introduced by Wobbrock et al. [48]. The
analysis of over 2,400 user-generated microgestures for 10
referents on all objects allowed us to identify user agreement,
user’s mental models and gesture preferences. Our key find-
ing is to answer how grasps and object geometries affect
the design space of microgestures performed on handheld
objects in the light of the interactional constraints caused
by holding a physical object in one’s hand. We character-
ize users’ preferred types of action when hands are busy
and show that these actions mainly depend on the referent,
rather than on the grasp or object. In contrast, the choice
of fingers and action location is strongly influenced by the
grasp and the size of the handheld object.
We add to the existing elicitation method by proposing

statistical clustering of users’ elicited gestures. This approach
facilitates finding previously undiscovered patterns through
a full data-driven interpretation. It identified similarities of
among different geometries and ultimately allowed us to
present three main cluster sets of gestures that cover inter-
actions for all 12 varied objects.

We further derive design implications that guide designers
of microinteractions in choosing microgestures compatible
for use with handheld objects. Subsequently, we identify rec-
ommendations for the design of future sensors and gesture
recognition systems. We believe our results are an important
step toward enabling gestural interfaces that are compatible
with varied settings when the user’s hands are busy.

2 RELATEDWORK
Our study is informed by prior empirical elicitation stud-
ies, conceptualizations of grasping, and advances in sensing
techniques for microgestures:

Elicitation Studies of Gestural Interaction
Previous work has identified the importance of including
end-users in the gesture design process [31, 32, 34, 48, 49].
It has been shown that gestures defined by larger groups
are easy to remember, since they are conceptually simple
and less demanding. The method of eliciting gestures from
end-users, initially proposed by Wobbrock et al. [49], has
quickly found widespread use in various areas, ranging from
tabletop gestures [49] to drones [12]. More closely related to
our work are elicitation studies of microgestures and gestures
performed with handheld objects. A recent study by Chan et.
al [7] investigated properties of single-hand microgestures,
including actions and fingers used, but in an empty-hands
setting without objects. Several studies have investigated
gestures on self-sustained objects, such as steering wheels
and bike handles [2, 11, 44]. Our work is different in that
users had to continuously hold the handheld objects.
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Little previous work has empirically investigated input
while the user’s hands are busy. Lee et al. [23] explored
deformation-based user gestures on various materials such
as plastic, paper, and elastic cloth. We followed a similar
approach using real-world objects. In our work, we leverage
the gripping posture and embrace the challenge of using only
one hand. We took inspiration from previous work by Wolf
et al. [50], who investigated micro-interactions to support
secondary tasks while the user’s primary task involves hold-
ing an object. This work investigates three objects: steering
wheel, cash card and stylus. Gestures are identified based on
consultation with four experts. We extend this work by in-
vestigating a wider variety of 12 objects, conceptually based
on a taxonomy of grasps. Based on a large set of gestures
elicited from end-users we contribute the first empirical anal-
ysis of how grasps and object size affect the properties of
microgestures.

Taxonomies of Grasping
The rich variety of possible actions that can be performed
by the hands has been conceptualized in different domains,
including in medical, robotics, and bio-mechanical fields.
Taxonomies of discrete grasp have been proposed for various
goals [5, 9, 19, 25, 33]. Schlesinger [39] put forth a classic
taxonomy initially developed for designing prosthetic hands.
A comprehensive survey of grasp taxonomies can be found
in [28].

Sensing Hand Gestures
In recent years, considerable advances have been made in
sensing input performed with hand and finger gestures. Var-
ious sensing approaches have been presented for detecting
hand gestures. Camera-based approaches [4, 8, 14, 20, 27,
29, 43, 51], electromyography-based approaches [37, 38] and
bioacoustic approaches [1, 10, 14, 21, 52] have demonstrated
the recognition of one-hand gestures. Passive techniques are
also proposed [22]. Another highly accurate motion-tracking
approach detects microgestures based on millimeter-wave
radar [24]. Furthermore, researchers have demonstrated sens-
ing by instrumenting the skin itself [18, 35, 46]. As an alterna-
tive to augmenting the user’s body, sensors can be integrated
into the object [40, 41, 53]. Recently, [15] has suggested cre-
ative alternatives for no-handed interactions with smart-
watches. Although research on sensing of interaction while
hands are holding objects is still in an early stage, one of
our aims with this study is to provide guidance on future
research in sensing.

3 METHOD
To investigate how users perform microgestures while they
are holding objects using various grasps, we conducted an
elicitation study.

Participants
20 healthy participants (10m, 10f, mean 26.2y; median 25y;
2 left handed) were recruited from different professional
backgrounds (arts, engineering, law, psychology) and various
cultural backgrounds (Western Europe, Middle East, India,
China, USA). Participation was voluntary. Each participant
received a compensation of 20 Euros.

Apparatus
Following the method proposed by Wobbrock et al. [49], we
intentionally refrained from using any sensing technology
so as not to bias the user’s response by restrictions imposed
by equipping everyday objects with sensors. Participants
used passive handheld objects. No additional feedback was
provided. The entire session was video recorded.

Referents
Our list of referents is informed by [7, 49]. In total, we se-
lected 10 referents that comprise discrete (select, delete), bi-
nary (accept/reject, next/previous) and continuous (increase,
decrease, move, rotate) commands. We kept the set of refer-
ents compact, first because microinteractions are commonly
used for a small set of simple and quick commands that do
not disrupt a primary activity, and second to keep the study
feasible despite the number of conditions, which was con-
siderably larger than in typical elicitation studies from prior
work.

Grasps
We based our grasp conditions on Schlesinger’s seminal
classification of six prehensile postures that account for
variations in object shape, hand surfaces and hand shape
[28, 39]. This classic taxonomy is frequently used in prior
work [13, 16, 17, 36, 38, 42]. The grasp conditions are:

• Cylindrical: for holding cylindrical objects, such as a
coffee mug.

• Palmar : for grasping with palm facing the object, such
as grasping a book.

• Hook: for grasping a heavy load such as a bag.
• Lateral: for grasping flat objects such as paper.
• Tip: for grasping small objects such as a pen.
• Spherical: for holding spherical objects such as a ball.

Object Size
We hypothesized that within each grasp type, the size and
weight of the object would affect the grasp and hence the
set of microgestures that can be performed. We performed a
pilot study with two interaction designers who were asked
to perform any microgestures they could think of on objects
of largely differing weight (ranging from a feather-weight
styrofoam ball to a 10 kg dumbbell) and largely differing size
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Figure 2: Selected grasps and corresponding objects for
small and large object sizes.

(ranging from tiny needle to a 75 cm yoga ball). The results
of this pilot study indicated that size has a strong effect on
microgestures. To give only one example, while holding a
cylindrical object of small diameter, the user can perform
actions such as snapping around the object or touching his
fingertips. These are not possible with larger diameters. We
found that weight has a much less strong influence on the
microgestures that can be performed, as long as the weight
allows a user to comfortably hold the object using a single
hand. For example, one can tap the sameway on a very heavy
ball and on a lighter ball.
We therefore decided to investigate variations of object

size only and selected a small and a large object for each
grasp.

Representative Handheld Objects
We chose a total of 12 handheld objects that represented
our 6 grasp conditions as well as a significant variation in
size within each grasp. The set of objects is shown in Fig. 2.
To identify representative objects that cover varied environ-
ments, two interaction designers have iteratively compiled a
list of objects, selecting objects from the literature [26, 50]
and adding further ones from everyday usage. We opted
for real-world objects instead of abstract geometrical props
to make it easier for participants to conceive gestures they
would make in a realistic setting. Our final set of objects
contains: knife and hammer for cylindrical graps; small card-
board box and large cardboard box for palmar grasp; bags with
small and large handle for hook grasp; credit card and A4-size
paper sheet for lateral grasp; sewing needle and marker for
tip grasp; pestle and scrubber for spherical grasp.

Task and Procedure
We used a within-subject design. The order of referents,
grasps and object sizes was randomized. Participants elicited
gestures while standing. First, we chose one of the 12 objects
(in random order). The participant was given the object that
represents the grasp and object size condition of this trial and
was asked to naturally hold it steadily in the dominant hand.

For each object, we then presented all 10 referents one after
another, in a random order. For each referent, the participant
had to make a microgesture using the same hand that was
holding the object. To reduce legacy bias, we applied priming
[30] by informing participants about the potential of such
‘Grasping Microgestures’. In addition, we ensured today’s
computing technology was neither used nor visible during
the study: names of objects and referents were presented on
paper slips, and we asked participants to place their personal
devices out of sight.
In a few cases, the participants chose a different grasp

than the one to be tested in the trial. Then the experimenter
asked the participant to present a second gesture using the
correct grasp. We also asked for a second alternative if the
proposed gesture involved rotation or movement of the ob-
ject. This was taking into account that in some real-world
environments it would not be possible to move or rotate the
object (e.g., a glass full of water or a power tool).

For each participant, the experiment took approx. 3 hours
and was conducted in two sessions of 1.5 hours each.

Analysis
Overall, we elicited 10 (referents) x 6 (grasps) x 2 (object sizes)
x 20 (participants) = 2,400 microgestures. An additional 131
microgestures were performed in case of change in grasps,
object movement or rotation, as described above. This gave a
total of 2,531 gestures. We used descriptive labeling, chunk-
ing, and phrasing [6] for our data analysis. We analysed more
than 50 hours of video recording and manually annotated
each proposed gesture with its properties: which type of
action was performed (e.g., tapping, sliding, pressing), direc-
tion (if applicable), count (e.g., 2 for double-tap), finger(s)
used (including phalanges of the fingers and the thenar and
hypothenar eminences), location type (on object, on body, or
in air), location on object faces (similar to [2]). The labels for
action type and location type were iteratively refined using
an open coding approach.

4 RESULTS
In this section, we present results of the elicitation study.
We analyze agreement between participants and analyze the
properties of the proposed microgestures, including action
types, location of interaction and finger usage. The results
show that microgestures strongly depend on the type of
grasp and the size of the handheld object, as these offer dif-
ferent affordances and constraints. We are able to show that
all 12 object conditions can be clustered into four types, for
each of which we present a consolidated consensus gesture
set.
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REFERENT

OBJECTS

cylindrical palmar hook lateral tip spherical

small large small large small large small large small large small large MEAN STDEV
select 0.300 0.321 0.300 0.342 0.276 0.242 0.314 0.321 0.321 0.405 0.219 0.347 0.31 0.05 
accept 0.195 0.143 0.224 0.142 0.174 0.205 0.152 0.147 0.174 0.113 0.105 0.194 0.16 0.04 
reject 0.137 0.138 0.065 0.065 0.147 0.148 0.147 0.258 0.347 0.119 0.087 0.152 0.15 0.08 
delete 0.072 0.110 0.090 0.065 0.071 0.049 0.087 0.083 0.073 0.083 0.082 0.057 0.08 0.02 
next 0.179 0.105 0.168 0.132 0.084 0.189 0.147 0.086 0.142 0.105 0.110 0.081 0.13 0.04 

previous 0.174 0.137 0.158 0.174 0.100 0.200 0.116 0.069 0.162 0.074 0.132 0.071 0.13 0.04 
increase 0.586 0.637 0.432 0.568 0.186 0.290 0.257 0.242 0.248 0.437 0.479 0.374 0.39 0.15 
decrease 0.732 0.563 0.390 0.584 0.179 0.333 0.363 0.247 0.300 0.426 0.437 0.374 0.41 0.15 

move 0.323 0.602 0.589 0.814 0.652 0.478 0.320 0.648 0.317 0.524 0.468 0.344 0.51 0.16 
rotate 0.514 0.652 0.814 1.000 0.510 0.729 0.484 0.447 0.308 0.431 0.241 0.308 0.54 0.23 

MEAN 0.32 0.34 0.32 0.39 0.24 0.29 0.24 0.25 0.24 0.27 0.24 0.23
STDEV 0.22 0.24 0.24 0.33 0.19 0.19 0.13 0.18 0.09 0.19 0.16 0.13

Figure 3: Agreement rates for all referents, shown individually for grasps and object sizes.

Agreement Rate
To identify the level of consensus between participants’ pro-
posals, we calculated agreement rate between participants
using the AGreement Analysis Toolkit (AGATe) and the mod-
ified agreement rate introduced by Vatavu et al. [45]:

AR(r ) =
|P |

|P | − 1

∑
Pi ⊆P

(
|Pi |

|P |

)2
−

1
|P | − 1

(1)

We considered participants to be in agreement if they
proposed a gesture of the same action type and the same
properties, for instance same direction of swiping or same
number of taps. This resulted in 18 unique gestures. Agree-
ment rates were calculated individually for each grasp and
object size.

The results are shown in Figure 3. Agreement rates ranged
from 0.049 (low agreement, AR ≤ 0.1) to 1.000 (very high
agreement, AR > 0.5). The mean AR across all objects and
referents was 0.281 (SD = 0.19), which can be qualified as
medium agreement (0.1 < AR < 0.3). This range of agreement
is comparable with those reported in prior work involving
hands as a primary input [7, 23, 47].

Agreement rate among different referents. We observed con-
siderable variation in agreement rates for different referents,
as commonly reported in prior work. Participants appeared
to agree more for commonly used operations like Select. This
can be explained not only by a stronger legacy bias, but also
by the relative ease of finding a simple mapping for referents
such as tapping for select. We also observed higher consen-
sus for commands related to physical actions (Move, Rotate),
for which most participants proposed gestures that involve
directional movement. In contrast, we observed lower agree-
ment rates for critical commands such as Delete and Reject.
Many participants intended to avoid false activation of such
critical operations and hence tried to make unique sugges-
tions.

Agreement rate among different grasp types. Our results re-
veal that agreement rates vary among different grasp types.
Palmar and Cylindrical grasps show higher agreement than
the remaining grasps. This finding might be related to the
constraints imposed by these grasps, which restricted finger
movement more considerably than in other grasps. Object
size had a less considerable influence on agreement rates.

Action Types
To understand what actions the proposed microgestures con-
tain and how the choice of action depends on the referent
and on the handheld object, we identified action types and
their distribution for referents and objects.

The results are depicted in Figure 4(top). They show that
the type of action chosen strongly depends on the referent.
We identified the following action types:

(1) Tap (26.1% of all proposed gestures): Participants chose
tapping actions most frequently for 3 of the 10 refer-
ents (Select, Accept, Delete). For Select, 79.3% of all
proposals involved tapping. During the think-aloud
session, users mentioned its ease and resemblance to
input on touch devices. Participants also leveraged the
spatial precision of choosing one specific location of
tapping in a some proposals for Accept, Reject, and
Delete, as well as for Next and Previous.

(2) Press (8.2%): Press was among the least performed ac-
tions. Some participants intentionally used pressing,
as opposed to tapping, as a means to confirm for Select,
Accept, and Delete.

(3) Stretch (9.2%): Some proposals included in-air finger
movement, such as pointing with a finger, or stretching
out one or multiple fingers. For Reject and for Delete
16 participants proposed stretching out two or three
fingers (middle, ring and pinky), as if to flick something
away.

(4) Swipe (37.7%): Continuous actions such as Increase-
Decrease and Next-Previous leveraged the fluid, direc-
tional as well as continuous nature of swipes. Although
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all referents were shown in random order, and hence
dichotomous pairs of referents were not necessarily
presented one after another, participants intentionally
made use of opposite direction movements for such
dichotomous pairs (“outward as increase, towards my-
self is decrease” [P10]). Participants also acknowledged
that object geometry plays an important role in help-
ing map directions.

(5) Draw (16.4%): We classified all non-linear swipes as
Draw. Participants used this action in more than 80%
of the proposed gestures for Move and Rotate, leverag-
ing intuitive spatial mappings. For instance, a circular
sliding motion was used for rotate, while directional
movements similar to input on a trackpad were used
for Move. 6% of the proposed gestures for Delete were
a ’cross’ symbol.

In addition to these types of action, a very small number of
proposals involved changing the grasp (0.9%), moving the
object (0.5%), or rotating the object (0.8%). As these were
very rarely proposed and would not be compatible with all
objects, we do not recommend using those.

Contrary to distribution across referents, grasp and object
size did not considerably affect the choice of action type,
as shown in Figure 4 (bottom). A few minor exceptions are
notable, however. Spherical grasp with large object (Scrub-
ber) showed the highest percentage of draw actions, which
represented almost one in three proposed gestures of this con-
dition. We observed that the thumb movement is restricted,
however, the index finger can move easily over the large
surface and draw gestures, similar to the posture of holding
a computer mouse. In-air gestures were performed mainly
with grasps on objects where some of the users’ fingers were
not involved in holding the object and hence free to bemoved
in mid-air. This is visible in case of lateral grasp (13.1% and
16.1%) and tip grasp with the small sewing needle (17.8%).

These findings confirm empirical findings of prior work
that investigated designers’ rather than users’ mental model.
They also extend to a larger set of grasps and objects and for
the first time quantify distributions.
Overall, we can conclude that the choice of action type

is mainly guided by the referent, rather than the grasp or
object.
A second central implication of our findings is that the

vast majority of proposed gestures uses tapping, swiping or
drawing, which are all established multi-touch interactions
common on handheld devices. Taken together, these findings
suggest there might be a possibility of defining consistent mi-
crogestures for handheld objects that use similar actions for
all objects while being compatible with a user’s established
mental model of multi-touch interaction.
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Figure 4: Action distribution for Referents (top) and Objects
(bottom).

Action Location: On-Object, On-Body, In-Air
While action type appears mostly unaffected by grasps and
objects, our results show that the handheld object strongly
influences the location where this action is performed. As
we did not put any restrictions on where participants did
microgestures with their dominant hand, participants were
free to perform those not only on the handheld object itself,
but also on their own hand or fingers, or in mid-air.
As shown in Figure 5, the location used for interaction

depends on the size of the object. This plot arranges objects
based on the proportion of microgestures that were done
on the object, rather than on the body or in air. (Note that
in all these cases the participant kept holding the object.)
It becomes apparent that with increasing size of the object,
a higher proportion of gestures are on the object. On the
box objects, around 90% of all gestures have been performed
on the object itself. Some users commented that making
gestures on the large box is similar to using a touchpad. On
the contrary, as small objects do not offer large surface real-
estate for performing gestures, a considerably higher fraction
of gestures was performed on the user’s own hand or fingers,
or in mid-air in case of small objects. The most extreme
case, the needle, offers virtually no space for gestures, hence
almost 90% of all gestures have been made on the body or in
mid-air.
44.0% of the gestures performed using the needle were

mid-air gestures due to the lack of surface area on the object.
Very few people used their index finger as a pointer. In case
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Figure 5: Action location for each object.

of the needle, and also for paper, a common strategy con-
sisted of making touch gestures with a finger on the palm of
the same hand, like on a touchpad. Some participants were
amused once they found out that they can actually touch
their palm with the same hand’s finger. Once they discov-
ered this affordance, they started leveraging the considerable
space for gesturing provided by the thenar region while hold-
ing small objects. 12.1% of all proposed gestures for paper
and 11.0% for needle used this strategy.
In contrast to self-sustained objects, such as the steering

wheel [2], the hand could not be easily moved on our hand-
held objects to reach distant locations without risking the
object falling down. Hence, the majority of microgestures
appear close to the position where the object is held. Fur-
thermore, none of our participants used prominent visual
landmarks on the object (like a printed logo) for interaction.

Use of Fingers
While prior work on free-hand microgestures has identified
frequency rates of finger use [7], we are not aware of any
such information reported about microgestures with hand-
held objects. Taking into account that grasping an object
constrains finger movement, it is to be expected that dif-
ferent grasps considerably affect which fingers are used for
microgestures. Here, we contribute the first frequency usage
for each finger based on different grasps and object size.
The results are depicted in Figure 6. They empirically

confirm that the grasp considerably affects the choice of
fingers for microgestures. We identified two main clusters,
based on grasps: For Hook grasp, Palmar grasp, Cylindrical
grasp and Spherical grasp, the vast majority of gestures were
performed using the thumb or index finger. These grasp
types have in common the use of most or all fingers for
holding the object. This allows the user to temporarily move
the thumb or index finger, while using the remaining fingers
to stabilize the hold.
By contrast, for Lateral grasp and for Tip grasp with a

small object (sewing needle), the vast majority of gestures
were performed using middle, ring or pinky finger, or a com-
bination of those. These grasps have in common holding

the object with both thumb and index finger. As their move-
ment was constrained, participants resorted to using the
remaining fingers for microgestures. In those cases, the mid-
dle finger was most frequently used. For instance, a user
might be comfortable using the middle finger to perform a
swipe on a digital pen to increase the stroke width. In con-
trast, using the thumb would create an imbalance in the grip
and might lead to dropping the object. However, there were
some instances where participants avoided using the middle
finger due to social inappropriateness of gesturing with the
middle finger, although the gesture would have been easier
to perform than with the ring or pinky finger (“[it is] socially
unacceptable if I use the middle finger, which is easy to do”
[P4]).
Tip grasp with a larger object (marker) was situated be-

tween both clusters, with a fairly even distribution between
thumb/index and middle/ring/pinky.
Analyzing the first group in more detail, our data reveal

that microgestures in Hook grasp and Cylindrical grasp most
frequently use the thumb and rarely use the index finger.
Also, Palmar grasp shows a slight preference for the thumb.
We believe this is particularly likely because in such cases the
object rests against the other fingers and hence the thumb
can be easily released from the object for interaction. In
contrast, Spherical grasp and Tip grasp (large object) make
more equal use of the thumb or index finger.

Similar to the findings by [2], our data show that the choice
of finger used to perform the gesture is almost unrelated to
the associated command. Contrary to [7], participants did
not complain about not remembering the exact finger. Our as-
sumption is that this is because of the additional constraints
present in settings with handheld objects: since the grasp
posture restricts the choice of fingers to be moved, it helps
users to remember the fingers used for the interaction.

Qualitative Analysis
We used an open-coding approach, with iteratively refined
codes, to describe the gestures’ properties, such as the type
of action, gesture location, and finger details. In addition,
we annotated gesture properties with unique observations
we made during the study and post-session interviews. Al-
together, the analysis revealed several interesting insights
about how participants performed gestures. For instance,
when performing the gesture on a small object, participants
showed a variety of techniques to overcome the limited
amount of space on the object. This included slightly ad-
justing the grasp or retracting fingers that were not involved
in a gesture to create additional space on the object for mak-
ing touch gestures. Participants clarified that techniques like
unconsciously bending fingers for creating an interaction
surface were inconsequential to the core gesture. Similarly,
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Figure 6: Fingers used as an actor for grasping microgestures.

participants completed linear swipes through diagonal move-
ments when a specific horizontal or vertical movement was
not possible on the object geometry (e.g., swiping at the
backside of the paper using the middle finger (“I don't have
vertical movement... doing it diagonally” [P4]).
In almost all cases, users performed touch gestures with

the center of the fingertip. In some cases, however, like slid-
ing along the pestle, the ulnar (inner) side of the finger was
used due to the ease of contact. There were also very few
instances where the hand’s metacarpus (palm) region was
used as an input mainly for Press actions while holding the
object. Moreover, participants preferred using the nail in-
stead of fingertips for interactions involving "knocking" on
an object. These variations with different finger parts can
expand the design space of performing gestures on an object.
Several participants commented that they would be willing
to repeat the same gesture to allow the system to distinguish
the gesture from normal object manipulation and to ensure
it is recognized as intended input. While feedback is out-
side the scope of this study, one participant explicitly stated
that he would appreciate getting vibrational feedback as a
confirmation the gesture was accepted.

Clustering of Grasps
A major challenge in designing microgestures for use with
handheld objects is the large number of grasp types, which is
further complicated by additional influencing factors such as
object size. As it would not be desirable to design individual
gesture sets for each condition, we sought to further extend
the information provided by the agreement score analysis. In
addition to finding consensus gestures for a given referent,
we aimed at analytically identifying commonalities among
the users’ microgesture proposals in different conditions.

While statistical clustering is a commonly used technique
in the fields of machine learning and pattern recognition,
to the best of our knowledge we are the first to leverage
this data-driven approach in an elicitation study to reveal
patterns. We used all gesture properties we had annotated
in our dataset, including action location, finger use, etc. To
avoid a bias, we removed information about the experimental

SphericalTipLateralHookPalmarCylindrical

Si
ze Grab Pinch Claw

Figure 7: 3 Clusters derived from the commonalities of the
interaction amongst all 12 representative objects.

condition (grasp type, object size). We first applied Principal
Component Analysis (PCA) for dimensionality reduction of
our annotated data. Furthermore, we used the simple yet
robust K-nearest neighbor approach for clustering. We em-
ployed the elbow method to find the optimal number of
clusters (k=5). After analysing the K-nearest output and visu-
alizing the level of separation between clusters, we observed
that the frequency distribution of gestures from the same
condition across the five clusters showed a significant peak
on exactly one cluster for all conditions. Hence, we applied
the majority rule to map each condition (grasp x object size)
to exactly one cluster. It is worth noting that one of the 5
clusters did not contain any majority vote, and hence became
an empty set in our final grouping. The resulting clusters,
which we call Grab-a, Grab-b, Pinch, and Claw are shown in
Figure 7.
Cluster Grab-a comprises grasp types where the user’s

fingers are reaching around the handheld object, allowing
thumb or index finger to be moved, while the object is offer-
ing considerable surface real estate for interactions. Cluster
Grab-b (shown with dotted lines) can be qualitatively ex-
plained by the combination of a handle with small diameter
and the Hook grasp. This resulted in a unique affordance
allowing the thumb to reach around the handle and perform
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Figure 8: Consensus gesture set for all 3 main clusters.

gestures on the user’s hand, specifically at the distal phalanx
(front) side of the index finger.

Cluster Pinch comprises grasp types that predominantly
make use of the thumb and index finger for holding the object.
Cluster Claw comprises grasp types that have predominant
use of index finger rather than thumb.
Comparing this empirical clustering with the intuitive,

conceptual grouping of grasps done by Saponas et al. [38], it
is interesting to note that both approaches resulted in three
groups of grasps. Our empirical findings confirm the intu-
itive grouping of Palmar and Cylindrical grasps. Likewise,
our findings confirm that Hook grasp forms its own group,
however only for small objects. Most important, our findings
show that contrary to the grouping proposed earlier, Spheri-
cal grasps systematically differ from Palmar and Cylindrical
grasps in the use of index finger vs. thumb, and hence should
not be grouped together.

Consensus Gesture Set
We used these three clusters to design consensus gesture
sets for microgestures with handheld objects. These are the
first end-user driven gesture sets that cover a large range of
grasp types and objects.
For each referent, we assigned the most frequently per-

formed gesture, similar to [49]. The gestures for Reject and
Delete are grouped together because of a high consensus for
this particular action by our participants.

Figure 8 shows the final consensus gesture sets. Drawing
from the quantitative data and our observations, we suggest
that conventional mapping of Tapping and Swiping offers
the most convenient mapping for Select, Increase/Decrease,
and Next/Previous actions. The press modality has beenmost
frequently proposed for confirmation. Stretching of fingers,
used for Reject and Delete commands, require higher user
consciousness, reducing the likelihood of any false input.
The circular or directional Draw action defined for Move and
Rotate provide natural spatial mappings.

Even though we present three consensus gesture sets–one
for each main cluster identified in the previous section–it is
to be noted that these gesture sets share many features. For
each referent, the action type and main action properties are
similar in all gesture sets. The first and second gesture sets
only differ in use of thumb vs. index finger. The difference
between the second and third gesture set is that gestures
appear on-body or in-air vs. on-object.
Despite the large variations in grasps and object sizes

these user-defined gestures support, we believe these mi-
crogestures will be easy to memorize and easy to perform.
This is because they build on established mental models of
touch interaction, systematically leverage affordances and
constraints offered by grasps, and use similar gestures for all
grasp types.
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5 IMPLICATIONS FOR DESIGN
Based on the results presented in the previous section and
qualitative feedback of participants while thinking aloud
and during interviews at the end of each session, we derive
several implications for design of systems for gestural input.

Microgestures on Everyday Handheld Objects
A central question that motivated our study was to find out
how the multitude of grasps and object geometries affect
users’ choice of microgestures they perform while holding
objects. Would designers of applications for mobile com-
puting and the Internet-of-Things have to design a custom
set of specific gestures for each type of object? Are there
commonalities that allow us to use the same gestures on
many objects? The former would be very undesirable from
a usability standpoint and would risk frustrating users up
to the point of rejecting the new opportunities unleashed
by microgestures. The latter would be highly desirable but
seemed unrealistic to us before conducting the study.
One of the primary and surprising findings of our study

is that three gesture sets are sufficient to cover all 6 main
types of grasp and 12 objects in our study. In addition, the
gestures are similar for all three sets, as they use the same
action types and gesture properties and mainly differ only in
what finger is used for making the gesture and whether the
gesture is performed on the object, on body or in air. Given
these choices are mainly guided by the affordances offered
by the object (small or large surface for performing gestures)
and constraints of the grasp posture (which fingers can be
moved easily while holding the object), we believe users can
easily perform the gesture that is compatible with the given
object. Ease-of-learning and memorization is further sup-
ported by our finding that most gestures build on established
touch gestures commonly known from touchscreens. While
this might have been strongly influenced by legacy bias, we
believe it is a strength of the gesture set, as it is compatible
with established mental models of interaction. Our findings
further show that miniature objects as small and thin as a
needle can be used as an input medium. Participants per-
formed similar microgestures as on other objects, but with
more on-body and in-air interaction. Fairly large objects,
such as a large cardboard box or a suitcase, can be used for
single-handed microgestures, too.

Avoiding False Positives
False positive input is a challenge while interacting with
handheld objects, as hand or finger movements that relate to
the primary activity might be incorrectly recognized as an
input microgesture. While our study design did not focus on
this question, our results indicate a number of strategies that

participants have used to avoid false positives. Many partic-
ipants were particularly inventive for gestures that trigger
a critical action like Deletion. The most varied actions have
been proposed for these referents to ensure they are different
from movements that relate to the primary activity (“Nor-
mally wouldn’t touch down” [P9]). For instance, one strategy
was to intentionally change the grasp while using the marker,
and touching the lowest tip part (area with ink). Another
strategy was to stretch only the pinky finger while keeping
the middle and ring finger in a flexed position. In contrast,
during natural movement, stretching the pinky would nor-
mally result in at least some stretching of the ring finger as
well. Participants went as far as using double or even triple
taps, or intentionally touching the sharp area of the knife, to
ensure communication of the input gesture is intended. As
an alternative to implementing a specific activation gesture
or mapping critical functionality to gestures that are hard to
perform, we recommend that designers implement an undo
functionality that allows the user to undo any previous ac-
tion that might have been triggered by a false positive. The
Reject gesture from our gesture set could be used for this
function.

Sensor Placement
The finger and location information provided in this study
can be used to inform sensor placement for gesture recogni-
tion systems on the handheld object, on the user’s hand and
fingers, or even both.
Our results show that by only sensing input from the

thumb and the input finger, a large majority of all gestures
can be sensed for all grasps other than Lateral and Tip with
small object. Gestures in Cylindrical and Hook Grasps can
even be reasonably captured with the thumb alone. For the
Lateral and Tip (small) grasps, sensing input from the middle
finger would offer a minimum instrumentation. While previ-
ous studies identified the pinky as the least frequently used
finger, we uncovered its unexplored dexterity while holding
small objects like needle and credit card.

Participants mentioned the thenar region as a large fleshy
area of the palm (“Tap with middle finger on the fleshy part of
the palm” [P11]), similar to the ’touchpad’ of laptop and used
it extensively as an input surface for touch gestures while
holding the needle. Designers of sensing systems should
consider capturing input on this area. Only 1 out of 20 partic-
ipants suggested the use of Shear action, and also Press was
rarely proposed. We therefore conclude that in most cases it
seems sufficient to capture touch contact alone.
Our location information can also be used to avoid false

positives on the object, placing the sensor at a location far-
ther from the place where the object is grasped. Being harder
to reach, it is less likely the user would interact on it unin-
tentionally.
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6 LIMITATIONS
In our study, we investigated gestures performed within a
short pause during the primary activity. As stated by Ash-
brook [3], such microinteractions should take less than 4
seconds to initiate and complete to smoothly integrate with
the primary activity. For this work, we opted against gestures
that would be performed simultaneously, without stopping
the primary activity. The effect of many possible physical
primary activities are beyond the scope of this study and
should be investigated separately in future work.
To help participants invent realistic gestures, we opted

for actual objects instead of abstract geometric props. The
choice of objects was centered around providing familarity
with the object. Some participants even commented that they
have never thought that such objects they commonly use
can be used for interaction. Using realistic objects for the
respective grasps implied that there is some natural variation
in size and weight of objects. We acknowledge this could
be a limitation from a formal experiment perspective, yet
we believe it is outweighed by the benefits of being able to
cover diverse realistic objects in this exploratory study. The
effects of object size and object should be investigated in
more detail in future work.

For the sake of comparability among objects, we have used
rigid objects. Future work should study how affordances of
soft materials might change user behavior. For instance, users
might perform more squeezing or pressing actions with soft
objects.
To create a more relaxed and creative atmosphere, the

participants in our study were not blindfolded, which we
deemed important for inventive gesture proposals. While
most of the proposed gestures can certainly be performed
during eyes-free interaction, we clarify that this is not nec-
essarily guaranteed, as participants were able to look at the
site of interaction.

7 CONCLUSION AND FUTURE WORK
In this paper, we have presented results from the first elic-
itation study of microgestures with handheld objects that
systematically compared the effect of grasps and object sizes
on the gestures conceived by end-users. Our findings re-
vealed a strong influence of grasp and object size on usable
microgestures. The results of data-driven clustering revealed
that the effect of various grasps and object sizes on micro-
gestures can be reduced to only three clusters. Our findings,
together with the consolidated gesture sets we have pre-
sented, can be used for designing gestural input and gesture
recognizers that work in settings where the user’s hands are
busy with holding an object.

Future work should investigate how gestures should be de-
signed that can be performed simultaneously with a primary

object manipulation task, such as hammering or writing.
The effect of object weight also remains to be studied in
more detail as well as how the choice of gestures depends
on the object’s material. Another important question for fu-
ture work is to specifically identify strategies for avoiding
false positive input during everyday activities. We see our
findings as a first step toward consolidated microgestures
that work with all common handheld objects and hope these
findings will be useful for designers of both input gestures
and gestural recognition systems.
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