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Figure 1. (a) PhysioSkin enables digital fabrication of custom electro-physiological sensing patches for monitoring EMG, ECG and EDA. (b) A custom
made skin-conformal sensor. (c) A fitness tracking sportswear tracks heart rate and muscle movements. (d) Raw signal of the heart rate recorded from
a temporary tattoo.

ABSTRACT
Advances in rapid prototyping platforms have made phys-
iological sensing accessible to a wide audience. However,
off-the-shelf electrodes commonly used for capturing biosig-
nals are typically thick, non-conformal and do not support
customization. We present PhysioSkin, a rapid, do-it-yourself
prototyping method for fabricating custom multi-modal physi-
ological sensors, using commercial materials and a commod-
ity desktop inkjet printer. It realizes ultrathin skin-conformal
patches (∼1 µm) and interactive textiles that capture sEMG,
EDA and ECG signals. It further supports fabricating devices
with custom levels of thickness and stretchability. We present
detailed fabrication explorations on multiple substrate mate-
rials, functional inks and skin adhesive materials. Informed
from the literature, we also provide design recommendations
for each of the modalities. Evaluation results show that the
sensor patches achieve a high signal-to-noise ratio. Example
applications demonstrate the functionality and versatility of
our approach for prototyping a next generation of physiologi-
cal devices that intimately couple with the human body.
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INTRODUCTION
Physiological sensors are recently receiving increasing atten-
tion in the broad field of computing. While long used in areas
related to health and rehabilitation [51], we are now witnessing
an impressive array of new applications in interactive com-
puting [25, 16, 9]. For instance, surface electromyography
(sEMG) allows for detecting gestural input using unobtrusive
wearable hardware [60]. Continuous monitoring of electro-
cardiogram (ECG) signals informs athletes about their per-
formance [2] and monitoring of electrodermal activity (EDA)
enhances computer-mediated emotional communication [58,
8, 25, 9]. In parallel, accessible hardware platforms and toolk-
its make it easier than ever to implement interactive systems
that include physiological sensing [62, 1].

Despite these advances, designers seeking to develop new ap-
plications are confronted with serious restrictions at the level
of the computer-body interface: commercial gel-based elec-
trodes are non-conformal, problematic at body locations that
deform, and neither ergonomic nor aesthetic to wear during
everyday activities. The materials community has contributed
a number of devices that are ultra-thin and can sense multiple
physiological modalities [21, 37]. However, these devices
require complex fabrication processes and advanced lab equip-
ment, which are typically inaccessible outside of specialized
labs. They also require expertise and domain knowledge in
multiple disciplines (materials science, bio-medical engineer-
ing) which can make if even harder for designers, practitioners
and makers in realizing custom physiological sensing solu-
tions.

To address this problem, we present PhysioSkin. We demon-
strate that established digital fabrication techniques support
printing customized electro-physiological sensor patches with
advanced material properties that allow for accurately cap-
turing sEMG, ECG and EDA signals. These patches read-
ily work with off-the-shelf commodity physiological sensing
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toolkits [63, 67, 62], eliminating the need for building custom
PCBs, and offering a rapid end-to-end pipeline for electro-
physiological sensing. Our main contributions are:

1. We show that the digital fabrication of skin-conformal phys-
iological sensing patches with advanced material properties
is possible within 5-20 minutes, using a desktop inkjet printer
and simple lab equipment. Through a systematic exploration
of materials, functional inks, and skin adhesive materials, we
present multiple fabrication approaches for sensors of cus-
tomized thickness, stretchability, durability, and reusability.
These realize sensors integrated in ultra-thin temporary tat-
toos (∼ 1µm), in stretchable TPU and PDMS materials, and
in textiles. Our sensors contain dry electrodes and are or-
ders of magnitude thinner than current off-the-shelf gel-based
electrodes.

2. Technical evaluation results demonstrate that sensors fab-
ricated using these techniques achieve high a signal-to-noise
ratio for EMG and ECG signals and a high Pearson correlation
coefficient(with respect to commercial gel-based electrodes)
for EDA signals.

3. We show how sensing of multiple electro-physiological
modalities (sEMG, ECG and EDA) can be integrated in a
single patch. We furthermore demonstrate how to integrate
electro-physiological sensing with user interface controls for
touch input.

4. Informed from the literature in bio-medical engineering,
we compile coherent design recommendations for the design
of electrodes for each of the modality to pick up high-quality
signals.

5. We demonstrate the practical feasibility and versatility of
our approach by implementing three example applications: a
textile vest for fitness tracking, a temporary tattoo for heart
rate monitoring, and a PDMS-based patch for arousal logging
in virtual reality environments.

RELATED WORK

Physiological Sensing
Design and fabrication of sensors for physiological monitoring
has been subject of intense research in the materials and bio-
medical engineering communities. Thin epidermal devices
have been presented that monitor various physiological signals
such as ECG [77], EMG [21, 77], pulse oximetry [37], sweat
and thermal characterization [32, 71]. Alternatively, textile
sensors have been extensively explored as well [14], including
for ECG [75], EMG [22], and EEG [40]. These solutions
commonly require high-end tools and complex processes that
are not compatible with the requirements of rapid prototyping.

The HCI community has explored using bio-signals for in-
teraction. This involved the use of EMG signals for gesture
recognition [59, 60, 5]. Various other bio-signals such as
electro-dermal activity, heart-rate activity, and electroocculog-
raphy have also been explored [9, 25]. Other work investigated
advanced device form factors for capturing bio-signals, for
instance in shorts [13], in spectacles [17, 31] or through epi-
dermal robots that move on skin [16]. This work, however,
did not investigate rapid prototyping.

Skin-Conformal Devices for Interaction
Recent advances have enabled interactive devices for use on
the skin that are thin, flexible and stretchable [72]. Ultra-thin
devices based on temporary tattoos have been demonstrated
that enable touch input and various forms of visual output [39,
34, 73, 47, 64]. More recent work has demonstrated the
feasibility of feel-through tactile output using a temporary
tattoo [74]. It has also been shown that on-skin devices can
be fabricated to be completely untethered and easily removed
and reapplied [41, 46].

Rapid Fabrication of Flexible Circuits and Sensors
To prototype custom flexible circuits and sensors in simple lab
environments, researchers experimented with copper tape [53,
61] and conductive paint [42]. To enhance speed and reso-
lution, conductive traces can be printed on substrates using
an off-the-shelf inkjet printer filled with silver nanoparticle
ink [35]. Printem [12] enables flexible PCBs with standard
office printers and inks. Other rapid and do-it-yourself fab-
rication techniques have been contributed for various appli-
cations such as electronic circuits [70], paper circuits [54],
textiles [49, 50], self-contained silicone devices [45], stretch-
able circuits [26], or cuttable sensors [48, 18]. More recent
work has introduced printing of soft circuits on a wide variety
of materials with a commodity inkjet printer [36], with a pre-
liminary investigation of a skin-bound EDA sensor. However,
digital fabrication of custom physiological sensors has been lit-
tle explored. Commercial gel-based electrodes or metallic dry
electrodes remain the de-facto standard in the HCI community
for acquiring physiological signals.

RECOMMENDATIONS FOR DIGITAL DESIGN
The electro-physiological sensors investigated in this paper
work by capturing electrical biosignals with electrodes on
the human skin. A prerequisite for capturing high-quality
biosignals is to place electrodes at carefully chosen locations.
Our approach allows the designer to define these in a digital
design, made in any 2D vector graphics application. In contrast
to manually placing electrodes on the body, digital design
offers both precise control and replicability.

Surface electromyography (sEMG) records muscle activity
by reading the electrical potential generated by muscle cells,
using two electrodes per muscle and an additional reference
electrode. Electrocardiography (ECG) record the electrical
activity of the heart which, amongst others, allows to identify
heart rate. While it commonly involves 12 electrodes, a smaller
number (3 in our implementation) is viable. Electrodermal
activity (EDA) captures skin conductance, which varies with
the state of sweat glands, and uses at least two electrodes.

Here we present a set of coherent design guidelines for the
electrode design that we have compiled from the body of
literature. Critical design choices relate to the size, location
and arrangement of electrodes:

Electrode Size
The contact area of the electrode influences the quality of the
signal. For EMG signal acquisition, the electrodes should have
a minimum surface area of 50mm2 and a diameter of less than
10 mm [29, 78, 44]. For ECG, most prior research has typically



designed electrodes in the range of 5–10 mm diameter [55, 56,
57]. For EDA signal acquisition, the recommended surface
area is 1.0 cm2 [23]. We therefore select our electrodes sizes to
be 10 mm diameter for EMG and ECG, and 12 mm diameter
(∼1.08cm2 area) for EDA electrodes.

Location of Electrodes
For EMG signals, the electrodes need to be placed on the
muscle whose movement is to be captured.

For ECG measurements, electrodes are typically placed us-
ing the standard 12-electrode placement [33] or based on the
Einthoven’s triangle arrangement [19]. However, alternate
placement strategies near both wrists and the forearm have
also been suggested [15, 76, 20]. Our approach is based on
prior work which designed 3-electrode ECG devices on the
forearm [76, 28, 3, 20]. This involves placing two electrodes
on the forearm and the third electrode away from these mea-
surement electrodes.

Since EDA electrodes measure the activity of sweat glands,
they should be placed at locations that have a high density of
sweat glands. The typical recommended locations are finger-
tips, palm (thenar and hypo-thenar eminence), foot sole and
forehead [23, 11]. However, prior work has also investigated
the EDA response at various other locations on the body [69],
which suggests that other locations such as forearm and wrist
can deliver satisfactory performance, too.

Inter-Electrode Distance
The distance between the measuring electrodes plays a vital
role in the signal acquisition. For EMG, the two measuring
electrodes should be placed along the direction of the muscle.
Their recommended distance depends on how deep the muscle
is present beneath the skin. For muscles present on the surface,
the recommended inter-electrode distance is 25 mm; for deeper
muscles, the distance is 40-50 mm [78, 7, 43]. For ECG
measurements, we used inter-electrode distances from prior
work [76], where the electrodes were placed around the arm
with distance interval of 3cm.For EDA measurements an inter-
electrode distance of 5–6 cm has been successfully used in the
previous literature [69, 6].

FABRICATION
The unique requirement for the fabrication of electro-
physiological sensors is the need for low-impedance skin-
contacting electrodes. This is in contrast with prior work
which contributed on-skin touch sensors [34, 47]. This adds
challenges, most centrally at the level of electrode materials
and skin adhesives, requiring different fabrication strategies.

Commercial solutions typically use electrodes covered by con-
ductive wet gel to improve the electrical contact; however this
makes the practical handling difficult and increase a device’s
thickness. Our solution uses more practical dry electrodes that
we print in custom arrangements using conductive silver ink.
The conformal nature of the substrates coupled with ultra-thin
conductive traces ensures that the electrodes can successfully
capture various bio-signals.

Leveraging on the ease and rapidity of inkjet printing, our
fabrication approach builds on printing conductive traces with
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Figure 2. Overview of fabrication options with Soft inkjet and Instant
inkjet printing.

a desktop inkjet printer, as previously presented by Kawahara
et al. [35] and Khan et al. [36]. We contribute a systematic
exploration of substrate materials, insulation mechanisms and
adhesion schemes, demonstrating for the first time that desk-
top inkjet fabrication can realize sensors for various electro-
physiological modalities using various materials. This opens
up a design space of customized levels of device thickness,
elasticity, robustness and fabrication speed. Figure 2 shows
a comparative overview of all substrates and the associated
compatible materials. We now present these different options.

Ultra-thin temporary tattoo sensor: Ultra-thin devices (∼3–
4µm) are realized by printing on commercial tattoo decal
paper (SUNNYSCOPA, Printable Temporary Tattoo Paper
for Laser Printer). Using the technique presented by Khan et
al. [36], a layer with electrodes and connecting traces is printed
using silver nano-particle ink and heat cured. Optionally,
three layers of PEDOT:PSS conductive polymer using the
same design can be printed first to enhance the mechanical
robustness of the brittle metallic layer. Silver traces, but not
electrodes, are then insulated by printing 5 layers of PVP
(Polyvinylphenol, Mw = 11,000 g/mol) on top. The layers are
thermally cured, as indicated in [36]. A sheet of skin adhesive
film (SUNNYSCOPA) is laser cut to leave electrode locations
uncovered and then bonded onto the printed tattoo sheet. The
sandwich can then be transferred onto skin.

Stretchable re-usable sensor using TPU or PDMS: While
a tattoo device offers prime skin compatibility, it only sup-
ports one-time use. By using thicker elastic materials, superior
robustness can be achieved while allowing for removing and
reapplying the device. TPU (thermoplastic polyurethane) sub-
strate (∼50µm thick, 6.5 MPa) has high elasticity. Using the
technique from [36], we print silver nano-particle ink on TPU
with added 5 layers of PVP providing the insulation. The patch
can be bonded to skin using skin adhesive film. Alternatively,
one can use Soft Skin Adhesive (SSA) (MG-7-1010, Dow
Corning), offering the benefit of applying and re-applying the
patches multiple times.

Alternatively, PDMS (Sylgard 184, Dow Corning) offers sim-
ilar mechanical properties. It is a substrate which has been
extensively used for developing a wide range of epidermal
devices, across disciplines. It offers great skin compatibility



Figure 3. Conformal skin contact made by the electrodes fabricated on
all the substrates.

and can be commercially acquired or self-fabricated in custom
thickness and stretchability [45]. We cast a custom PDMS
film (∼40µm thick, ∼2.7 MPa) using a doctor blade. Similar
to TPU, the designs can be printed with conductive inks and
applied on to the skin. However, as PDMS is hydrophobic a
plasma treatment is required before printing on the substrate.
For bonding to skin, we used a layer of SSA as a border
dressing. PVP is used for insulation.

Textile-integrated sensor: We demonstrate that printing can
realize functional skin-contacting electrodes that are seam-
lessly integrated on a textile. Informed by [36], we use com-
mercial textile transfer film (SKULLPAPER, Premium Textile
Transfer Film) and print electrodes and electrical connections
using silver. The electrical connections are insulated by print-
ing 5-6 layers of PVP. We create a negative mask of the design
and laser-cut the textile transfer film after printing. This en-
sures that only the electrodes and traces are transferred onto
the textile, leaving all other parts of the textile unaltered. Using
an iron, the film is then heat-transferred onto the textile. We
recommend this fabrication approach for tight-fitting garments
(e.g., body suits, sports wear), which ensure tight contact of
the electrode with the skin.

Ultra-rapid fabrication with PET film: A last approach sup-
ports very rapid fabrication, while sacrificing thin and elastic
properties. This can be an acceptable trade-off for low-fidelity
prototypes during early design stages. The technique uses
sinter-free silver-nanoparticle ink, avoiding the need to ther-
mally cure samples, as introduced in [35]. We print on PET
film (∼250µm, 2.5 GPa). For electrically insulating conduc-
tive traces from the skin, we cover them using transparent
scotch tape (∼50 µm), while leaving the printed electrodes
exposed. The printed sheet is adhered to skin using SSA.

Hardware and Interfacing
We used-off-the shelf commercially available prototyping
hardware for controlling our sensors. Olimex EMG/ECG
Arduino shields [62] were used for EMG sensing. How-
ever, we can anecdotally report that our sensors worked with
EMG boards from other manufacturers as well (Seeed Studio,

Groove EMG detector [66]). Sparkfun single lead hardware
monitor [63] was used for heart rate/ECG signal acquisition.
For EDA monitoring, we used Grove GSR sensor [67]. Data is
transmitted wirelessly from the Arduino to a laptop computer
using Bluetooth low energy. A python script reads the data
and offers a web server streaming interface. While our overall
hardware setup can be miniaturized using a custom PCB, our
goal was to ensure that the PhysioSkin overlays work with
off-the-shelf hardware which is easily accessible.

Connections between the sensor patch and the controller hard-
ware are realized using FPC connectors, to ensure a slim and
compact design. The FPC connector is bonded to the printed
circuit using conductive z-axis tape (Adafruit). Alternatively,
connections can be realized using simple copper tape in proto-
types that use only few electrodes.

Integrating User Interface Controls
To offer options for user input, capacitive touch sensors can
be integrated in the designs presented above, without adding
to the complexity of fabrication. Electrodes for capacitive
sensing are printed on the same layer as physiological sensing
electrodes. Contrary to the latter, capacitive electrodes must
be insulated from the skin. We achieve this using the same in-
sulation strategy as used for conductive wires. Touch sensing
is implemented using self-capacitance sensing with a commer-
cial touch controller (MPR121, NXP Semiconductors). To
ensure that the user does not accidentally press the bio-sensing
electrodes, the touch electrodes need to be placed 4-5 cm away
from the bio-sensing electrodes. This also reduces the interfer-
ence between the physiological sensing electrodes and touch
electrodes during a touch event.

ACCURACY OF ELECTRO-PHYSIOLOGICAL SENSING
To understand how well each of these substrate materials mon-
itor bio-signals, we conducted a detailed technical evaluation,
with commercial gel-based electrodes as baseline.

Method
Fabrication approach: We realized one device for each of
the fabrication approaches: Tattoo decal paper, PVP, PDMS,
textile, PET. The device was bonded to the participant’s skin
using the respective type of adhesive described above. For
the baseline measurements, we used commercial gel-based
electrodes (H124SG Covidien).

Sensing modalities: We tested all three modalities: sEMG,
ECG and EDA. For sEMG, the electrodes were placed on the
Flexor Carpi Radialis muscle of the dominant arm. We chose
this muscle since it aids in the wrist movement (flexion) [24].
ECG was measured with electrodes on the chest following
the Einthoven’s triangle schematic [19]. The EDA electrodes
were placed on the thenar and hypo thenar eminence of the
dominant hand, since this region has high density of sweat
glands [23]. For each combination of modality and substrate,
we fabricated separate devices. A device contained 3 elec-
trodes for EMG and ECG sensing and 2 electrodes for EDA.
The two measuring electrodes for EMG were on the muscle
line, while the third reference electrode was placed on the
posterior side of forearm.
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Figure 4. Comparison of SNR and Pearson correlation for EMG, ECG and ED signals for all the substrate conditions. The PQRST waveform is
labelled for ECG signals. Error bars indicate standard deviation.

Task: The participants were seated in a comfortable position
throughout the entire experiment. For EMG signal acquisition,
the participant was asked to perform wrist flexion movement
(bending the hand at wrist such that the palm faces the arm) in
a comfortable manner, like in prior work [59]. The movement
was repeated five times. For EDA and ECG signal acquisition,
the participant was at rest, with the hands on a table, while a
desktop computer logged the data for 300 seconds. For EDA,
the participant underwent a Stroop Color Test [65, 68]. This
test has been used in prior work for assessing EDA response.
In brief, cognitive stimuli are presented to the subject through
the use of words of different colors which are either conflicting
(word and color of text are different, i.e., "blue" is written in
green color) and non-conflicting (word and color of text are
the same). The participant is required to state the color of the
word and not read the text. The task consisted of three cycles
of 1 min. rest period followed by a 5 s long Stroop test. This
was followed by a final 1 min. rest period.

We recruited 8 participants (3 f., mean: 28.5y). The exper-
iment took 90–120 minutes per participant. The order of
FABRICATION APPROACH and SENSING MODALITIES were
counterbalanced. The data for each of the modalities was
sampled at 250Hz. Overall we had 8 (PARTICIPANTS) × 6
(FABRICATION APPROACH) × 3 (SENSING MODALITIES) =
144 sets of measurements.

Analysis
For EMG signals, we calculated the signal-to-noise ratio
(SNR) using a double-threshold detector as stated in prior
work [4]:

SNR = 10∗ log(
σ2

s

σ2
n
−1) (1)

where σ2
s and σ2

n are the variances of the ON and OFF states,
respectively. The ON state refers to the window where the
muscle activity has happened while the OFF state refers to the
window where there was no activity. The signal-to-noise ratio
for ECG can be calculated as follows [20]:

SNR =
(QRS)ECGp−p

(T −P)noisep−p
(2)

where ECGp−p is peak-to-peak ECG QRS amplitude and
noisep−p is peak-to-peak noise amplitude from T-P interval.

For the EDA response, we calculated the Pearson correlation
coefficient of each fabrication approach with respect to the
baseline condition, based on prior work [27].

Results
The results are depicted in Figure 4. Overall, our results show
that all fabrication approaches realized devices that can reli-
ably capture bio-signals, with tattoo paper substrates perform-
ing the best of all fabrication approaches for all modalities.
This can be explained by the fact that it has the lowest flexural
rigidity of all materials used (∼ 10-9Nm).

It is interesting to note that all devices can accurately capture
EMG signals. The minimum required SNR for obtaining good
EMG measurements was reported to be 20 dB [10]. All our
devices achieve SNRs that are considerably higher. PET is
lowest (mean:15.36, SD = 1.81), while Tattoo and TPU come
close to commercial wet-gel electrodes. This is impressive
considering our devices use dry electrodes.

For EDA signals, the tattoo substrate achieves a high corre-
lation and lowest deviation (mean: 0.95, SD: 0.01), again
coming close to commercial wet-gel electrodes. TPU, PDMS
and Textile follow with means close to 0.9, while PET shows
the least good result (mean: 0.76, sd=0.03).

For ECG signals, the mean average SNR for commercial wet-
gel electrodes was 7.45 dB while tattoo based electrodes had
a mean SNR of 6.31 dB. Figure 4(c) shows smoothened the
ECG signal after applying Hanning window (n =11). This
result is comparable to prior work contributed in the materials
community [21]. This suggests that PhysioSkin electrodes
can produce meaningful ECG recordings. TPU, Textile and
PDMS follow shortly after, with mean average SNRs between
5.5 and 5.8 dB. As can be seen in Figure 4(e), the captured



signal allows to clearly identify heart rate variability. PET has
a considerably lower SNR. As evidenced in the plot, the signal
cannot be accurately captured with PET. It is to be noted that
all these measurements, including those taken with commer-
cial wet-gel electrodes, are not suitable for clinical recordings,
since the minimum required SNR for clinical ECG recordings
is 20 dB [30]. This would require clinical-grade electrode
placement and measuring equipment, which is outside the
scope of this work.

EXAMPLE APPLICATIONS

Fitness Tracking Sportswear
To demonstrate rapid integration of multi-modal sensing in
textiles, we implemented a custom sports vest that can track
muscle movements and heart rate during exercising (see Fig. 1
(c) and video figure). It uses embedded, conformal textile elec-
trodes and circuitry that is printed and iron-transferred using
the method presented above. Locations on the vest were se-
lected such that the electrodes can have good electrical contact
with the body. We chose two muscles for EMG monitoring:
Biceps Brachii and the anterior part of the Deltoid muscle. The
electrodes were placed on based on the recommendations from
prior work [29]. Three electrodes for ECG monitoring were
placed near the chest. They are connected to an Arduino using
standard copper cables. Once the digital design was made, the
overall fabrication took approximately 15–20 minutes.

Interactive Heart Rate Sensing Tattoo
To demonstrate ultra-thin form factors and the ease of integrat-
ing input controls, we designed and fabricated a temporary
tattoo that can monitor the heart rate activity (Fig. 1 (d) and
video figure). It further offers two embedded touch sensors for
user input. One button is used for emotional communication
purposes, allowing to send one’s own live heart beat to a re-
mote loved one. A second button offers privacy options, for
turning the sensor on or off. Fabrication took approximately
25-30 minutes (including ∼ 20mins of heat curing).

Arousal Logging in Virtual Reality Interaction
Prior work [9] suggested using ECG and EDA to sense emo-
tional arousal and identify the magnitude of the emotional
response in immersive VR environments. To realize this ap-
proach in a skin-conformal form factor, we implemented a
PDMS-based device which can track ECG and the EDA on the
forearm. A PDMS based device was fabricated based on the
method described previously. The entire procedure took ap-
proximately 30–35 minutes. In our application, we developed
a 360°video viewer which logs the ECG and EDA data while
participants are watching the video. This could be utilized for
analysing the arousal patterns.

DISCUSSION, LIMITATIONS AND FUTURE WORK
EMG Signal Interpretation: The SNR gives a direct correlation
with how well the electrodes can pick up muscle activity. From
practicality aspect, prior work in biomedical engineering has
recommended [38, 10] that a SNR > 20dB is recommended for
detecting precise muscle activations while machine-learning
based techniques need to be utilized for signals with lower
SNRs( >8 dB) [38]. These findings have been confirmed for

hand gesture classification, showing a 96% accuracy with
20dB SNR for 7 gestures (1 rest and 6 gestures) using only
4 features[52]. The much higher SNRs identified in our eval-
uation for all substrate materials (except PET) show that the
EMG signals carry enough information for reliable use, e.g.,
in gesture recognition.

Body Locations: The quality of the signals is dependent on
the body locations. In our applications examples, we have
deployed the sensors at different body locations. However, the
location should be chosen based on the quality of the desired
signal. For example, forearm and wrist are not most ideal
locations for ECG monitoring which results in a noisy ECG
signal, however the heart rate variability can still be detected
from the signal due to the QRS peak. For clean ECG signal
with distinguishable PQRST wave, we recommend placing the
electrodes near the chest, as in our textile application case.

No clinical grade monitoring: We use hardware from com-
mercial rapid prototyping kits for acquiring bio-signals, rather
than clinical grade hardware and materials. Our approach
should not be used for clinical-grade monitoring. However,
our sensors can be useful for interface designers and hobbyists
for quickly prototyping custom physiological sensing solu-
tions for entertainment computing, gesture sensing, or fitness
tracking. Additionally, switching to medical grade PDMS, can
enable further designs and improve biocompatibility. Future
work could address replacement of plasma treatment since it
can alter the materials properties and is not easily available.

Scalability: The scalablity of our approach depends on the
number of analog pins on the microcontroller and the size
available for electrodes on the patch. We used a maximum of
5 channels and an A4-size printer.

Durability: All our substrates (except Tattoo) support usage for
multiple times. If the SSA adhesive is used, the patches can be
easily applied and re-applied without causing pain or remove
of body hairs. SSA is water-proof and can provide good
adhesion for long periods of time. Of note, the patches used
during our evaluation remained functional even after multiple
days and repeated use on multiple users. We can anecdotally
report that the textile sensors can withstand multiple washing
cycles; a formal study is left for future work.

Extending to other Modalities: Our results show that the elec-
trodes can capture bio-signals when in contact with the body.
We therefore believe that our approach should be scalable to
further electro-physiological modalities e.g. EOG and EEG,
which should be investigated in future work.

CONCLUSION
In this paper we presented a digital fabrication approach for
electro-physiological sensors. With a systematic exploration
of materials, functional inks, and adhesives, we demonstrated
that custom physiological sensors can be rapidly realized. In-
formed from the literature we presented a set of design rec-
ommendations that can guide designers to realize functional
physiological sensing patches. We contributed a comprehen-
sive evaluation across various material substrates, which shows
that PhysioSkin devices can capture good-quality bio-signals,
and demonstrate working implementations.
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