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ABSTRACT
Today’s typical input device is flat, rigid and made of glass. How-

ever, advances in sensing technology and interaction design sug-

gest thinking about input on other surface, including soft materials.

While touching rigid and soft materials might feel similar, they

clearly feel different when pressure is applied to them. Yet, to date,

studies only investigated force input on rigid surfaces. We present

a first systematic evaluation of the effects of compliance on force

input. Results of a visual targeting task for three levels of softness

indicate that high force levels appear more demanding for soft

surfaces, but that performance is otherwise similar. Performance

remained very high (∼5% for 20 force levels) regardless of the com-

pliance, suggesting force input was underestimated so far. We infer

implications for the design of force input on soft surfaces and con-

clude that interaction models used on rigid surfaces might be used

on soft surfaces.
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1 INTRODUCTION
With computing devices becoming increasingly ubiquitous, input

devices are also becoming increasingly diverse. Work in HCI [18,

54] and material science [32] are proposing solutions to enable

interactions on arbitrary surfaces, steering designers to appropriate
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everyday objects for input [1, 4, 34]. Consequently, we witness the

development of interaction techniques on surfaces which are not

rigid like glass, but soft, such as clothing [21, 33, 35], furniture [54],

or even human skin [51, 52].

If merely touched, rigid and soft surfaces feel similar. However,

soft surfaces deform under the pressure of the user’s finger (see

Figure 1), which provides additional sensory cues by stimulating

tactile and kinesthetic receptors [17, 20, 43]. Several studies showed

that we perceive the compliance
1
of a surface mostly through de-

formations because the surface wraps around the fingertip and

induces more tactile innervation [28, 47]. It is therefore reasonable

to assume that these additional sensory cues provided by soft mate-

rials have an effect on the user performance while interacting with

force input.

Force input is a common focus of studies in HCI, mostly because

it is a compelling alternative or complement to conventional touch

interactions, as it merely requires one finger and fingertip-sized

interactive surfaces. Its benefits have been demonstrated on rigid

surfaces for one-handed control of a slider’s value [11], access out-

of-reach areas on a mobile device [9], or quickly select commands

in linear menus [5, 8, 29, 30, 36, 57] using visual feedback. However,

to the best of our knowledge, only few studies investigated force

input performance on soft surfaces [6, 45], and none investigated

systematically the effect of the surface compliance on the user

performance. Thus, it is unclear whether interaction techniques

developed on rigid surfaces can be used on soft surfaces.

To address this gap in knowledge, we present an experiment

evaluating user performance of force input on soft surfaces for

visual targeting tasks. Building on best practices from previous

work [5, 8, 29, 36, 57], we designed a task that consists in matching

a force level using a slider controlled by the force applied on three

soft surfaces (Figure 1). Our results indicate that targeting high

force levels is more demanding on compliant surfaces (i.e., higher

selection times and number of crossings). Nevertheless, the error

rate remained low (∼5%) for a dense scale of 20 levels, regardless
of the compliance level. As previous work reported best results

using 10±2 levels [5, 8, 29, 30, 36, 57], we conclude force input was
underestimated so far. Based on these findings, we propose use

cases leveraging force input and infer implications for the design

1
compliance is the inverse of stiffness, i.e., "the amount an object deforms in response

to an applied force" [28]
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Figure 1: The three surfaces (silicone samples) used in our study. A pressure sensor is located between the fingertip and the
surface. In this example, the user applies a force of 10N on each surface, inducing different material deformations.

of force input on soft surfaces. We finally conclude that interaction

techniques used on rigid surfaces might be used on soft surfaces.

2 RELATEDWORK
To date, most studies investigated force input in the context of rigid

surfaces [5, 36, 41, 44, 57], but studies on soft surfaces are more

scarce [6, 45, 53]. Those studies which do investigate force input on

soft materials either do not systematically vary compliance [45, 53]

or use too few participants to be conclusive [6]. It is therefore

not clear if changing the surface compliance affects force input

performance.

2.1 Force Input Performance
Most studies focusing on force input investigated users’ ability to

accurately select absolute force levels [5, 8, 29, 30, 36, 57]. A typical

task consists of moving a cursor to a visual target – the cursor is

controlled by applying a normal force and the visual target indicates

the desired force level. In this case, the size of the target level can

vary to increase of decrease the difficulty of the task. Such a task

corresponds to conventional linearmenu selections using a pointing

cursor.

These studies investigated multiple force scales with varying

number of levels to cover various difficulty levels (e.g., 8, 10, or 12)

with a reported maximum of 16 [41]. The inferred consensus of

these studies is that users can accurately control force for scales

below 10±2 levels [5, 8, 29, 30, 36, 57], and their performance greatly

decreases with denser scales. Yet, it is important to note these

studies were performed in different contexts (e.g., pen input [36]

or back-of-device interactions [8]) and focused on specific force

ranges. In comparison, we explore force input using a single finger

on a compliant surface, and we let users define comfortable force

ranges in our study.

2.2 Visual Mapping
The output of a pressure sensor depends both on the sensor design

and the compliance of the materials it is connected to. In contrast,

human perception rarely differs from Weber’s law [16] which fol-

lows a logarithmic trend. Consequently, the visual mapping of the

sensor’s output plays an important role in the user performance as

it provides a good trade-off between the mechanical and perceptual

scales.

Previous work presented different visual mappings to explore

their impact on the user performance. Cechanowicz et al. showed

the advantages of a quadratic mapping [5], and Shi et al. the ad-

vantages of using a dynamic mapping based on a magnifying lens

metaphor [41] over a linear mapping. Nevertheless, these works did

not discuss the output of the pressure sensors, hence it is unclear

what is the effective end-to-end mapping. Stewart et al. proposed

to use a transimpedance amplifier to produce a linear output from

an original logarithmic output and showed high accuracy rates

(⩾98%) for 9 levels [44]. We implement the same solution in our ex-

periments since studies using linear mappings demonstrated good

accuracies [8, 29, 30, 44].

2.3 Selection Mechanism
Several strategies exist to select a force level (see [36] for a compar-

ison): the users can dwell, quickly release the finger from the sensor,

or produce a specific pattern in the force profile [11, 36]. Several

studies demonstrated that dwelling leads to better performances

mainly by reducing the number of crossings (i.e., the cursor enters

and leaves the target level) [5, 36, 57]. For dense scales, however,

the user accuracy is more vulnerable to small jitter creating many

crossings, hence quick release is more adequate. It is unclear how

this mechanism was implemented in previous studies so far, de-

spite the great impact it can have. To address this issue, Corsten

et al. demonstrated an efficient way to recognizing such mecha-

nisms based on the human model processor or CMN model [10].

We implemented this strategy for our experiments.

3 EXPERIMENTAL SETUP
In this section we present the experimental setup used in our ex-

periment. We first present the fabrication process of the three soft

surfaces (Figure 1). We then introduce the pressure sensor and ex-

plain the calibration protocol. We sought to better understand the

sensor response curve to provide a 1-to-1 mapping for users, thus

enabling a visual linear mapping. Doing so, we minimize the bias

introduced by the inherent features of the sensor and allow better

generalizability of the empirical results.

3.1 Fabricating the Soft Surfaces
Silicone is widely used as a material for creating soft interfaces

[4, 31, 46, 51]. Its crosslinking ratio, i.e., mass ratio between the

elastomer and curing agent, can be controlled to produce various

Young’s moduli [50]. This powerful advantage allows experimenters

to create specific deformable surfaces and facilitates replicability

of experiments [49]. We created three samples of 3.6×3.6×1.5𝑐𝑚3

using Sylgard 184 silicone [7]. We tested the perceived softness of
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Figure 2: Schematics of the circuit (left). Sensor output in re-
lation to the force applied on each surface (right). The dots
represent eachmeasure and the error bars 95% CIs of six rep-
etitions. The dashed lines representmodels fitted using non-
linear least square regressions.

six samples with mass ratios ranging from 30:1 to 12:1 and picked

three of them that we judged equidistant in terms of softness with

respective ratios of 30:1, 24:1, and 12:1 to represent a soft, medium,

and hard surface (Figure 1). Based on the model proposed by Wang

et al. [50], their approximate Young’s moduli are 0.67MPa, 0.83MPa,

and 1.67MPa, respectively. These moduli translate roughly to Shore

hardness A of 50, 20, and 10. We experience their softness similar

to a hard pencil eraser, an elastic rubber band, and a foamy ball.

3.2 Sensing and Calibrating Pressure
3.2.1 Sensor and Setup Configuration. We use the Interlink longtail

FSR400 [23], a commercial pressure sensor smaller than the fingertip

(∅5.08mm, see Figure 1), for two main reasons: previous studies

used the same or a similar device [5, 41, 55–57], and it facilitates the

replicability of the study [49] compared to a custom-made sensor.

During the experiment, the users applied normal forces using their

index finger directly on the sensor. The index finger was the only

finger in contact with the surface and the hand was resting on the

table. We placed the sensor on top of the three samples for all tasks

to sense the pressure applied between the fingertip and the surface

beneath (c.f. Figure 1). The flexibility and size of the sensor does

not hinder deformations of the surface. The contact mechanics of

such a system can be approximated by Hertz’ model for a sphere

(the fingertip) indenting a flat elastic sample as follows:

𝑝𝑚𝑎𝑥 =

1

𝜋

(
6𝐸∗

2

𝐹

𝑅2

)
2/3

(1)

With 𝑝𝑚𝑎𝑥 being the maximum pressure at a force 𝐹 for a sphere radius
of 𝑅 and an effective combined elastic modulus of sample and skin 𝐸∗.

We implemented the transimpedance circuit from [29, 44, 57]. Its

schematic is depicted in Figure 2-left We used an Agilent E3634A

power supply, a LM358N opamp, and an Arduino UNO to read the

sensor output. The experiment logic ran on a Dell XPS15 9570 with

a Intel Core I7 (2.20GHz) processor. We connected the Arduino

through USB and displayed all the visual stimuli on the laptop’s

screen (15 inches) using the Unity3D software. Based on the ADC

conversion rate and transfer of 4 integers at 9600 baud, we calculate

a delay of approximately 0.204ms with an additional average delay

of 8ms added by the Unity frame rate.

3.2.2 Calibrating the sensor. Based on Equation 1, we expect the

output of the FSR to be sub-linear. To verify this, we recorded the

sensor’s output in relation with the force applied using a scale. We

placed the samples on a scale and pressed with the fingertip to

reach a target weight. We recorded the output six times for each

weight (see Figure 2). As predicted, the sensor output increases

sub-linearly with force and are lower for more compliant samples

at equal force. We modeled the calibration curves with smooth

non-linear functions and thus translated the FSR output for each

sample into an applied force in Newton. Doing so, we carefully map

the sensor’s output to a linear response.

4 EFFECTS OF COMPLIANCE ON FORCE
INPUT PERFORMANCE

We study in this experiment how the compliance of a soft surface

affects force input performance. We use a within-subject design

with three independent variables: the compliance of the surface

(surface), the number of levels composing the force scale (scale),

and the target force level (target). In the following, we present

in more details our experimental design and the results of this

experiment.

Task. Users control a linear cursor by varying the amount of

force they exert on a soft, medium, or hard surface. They must

reach a target force level on a discrete level scale. Once the users

reach the required amount of force, they must quickly release their

finger [10]. This task is similar to a command selection task in a

linear menu.

Participants. We recruited 24 right-handed participants in our

local university (15m, 9f, 0d), aged from 21 to 37 (mean=28, SD=4).

They were compensated with 10€ each.

Independent Variables.We consider three independent vari-

ables: the compliance of the surface (surface), the number of levels

composing the scale (scale), and the actual levels to select (target).

For surface, we used three compliance levels, representing a

Soft,Medium, andHard surface, as presented in the previous section.
For scale, we first conducted pilots with scales ranging from 8 to

12 levels as proposed in the literature, but noticed that users would

easily reach high accuracy and could cope with higher densities.

We therefore tested increasingly higher number of levels, settling

at 20. We eventually used three scales composed of 12 (S12), 16
(S16), and 20 levels (S20).

For target, we followed a conventional procedure [5, 36] for

selecting target levels independently of the scale used (cf. Figure 3).

We considered an interval from 0 to 1000 and chose equidistant

values in this interval: 180 (Very Low), 360 (Low), 540 (Medium),

720 (High), and 900 (Very High). We then extend the scale on the
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Figure 3: Representation of the interaction between the tar-
get and scale independent variables. We follow a similar ap-
proach as Ramos et al. [36].

same interval to make each value correspond to a unique level. The

corresponding levels span from low to high force to provide a good

understanding of the user performance.

Dependent Variables. We evaluate the user performance with

three metrics: the percentage of correctly completed trials (success
rate), for how long did the participant apply force (selection time),
and how many times the participant entered and left the targeted

level (crossings).
We supplement these quantitative measures with the subjec-

tive preference of surface type (ranked, allowing ties) and 7-levels

Likert-scale items reporting on perceived comfort (7-Very Com-

fortable), accuracy (7-Very Accurate), and physical demand (7-Not

Demanding) for each surface.

Procedure. Participants initially provided the maximum force

level they could comfortably perform. We then set this maximum

value as the maximum of the force scales. This ensured that each

participant could comfortably complete the experiment. They chose

ranges from 0N to 6.60N [5.08, 9.78]
2
(Soft), 5.04N [4.11, 6.32] (Medium),

and 4.88N [4.06, 5.91] (Hard), which correspond to similar force ranges

studied in previous studies (cf. Table 1 in Discussion section). We

do not observe systematic differences between participants.

We asked the participants to reach the required level using a

label indicating the level to select, briefly stabilize to ensure their

selection, and then quickly release their finger. To start a trial,

participants had to press quickly on the sensor similar to a mouse

click. To detect the level selected we implemented the algorithm

suggested by Corsten et al. [10]: we average the values of the sensor

output in a time window of 50ms, ending 240ms before the end of

the movement.

We counterbalanced the order of surface and scale individu-

ally; we counterbalanced surface, then for each of its levels, we

counterbalanced scale. Before starting the experiment, the par-

ticipants trained by targeting all targets in S16 with the sensor

laying on the table (i.e., not a compliant surface). They then per-

formed the task on each surface consecutively, and for each scale

they had to select all the targets two times in a randomized or-

der. This procedure was repeated twice. Overall, we capture the

data of 24×3×3×5×4=4320 trials (#Participants × #surface × #scale

2
[LL, UL] represents lower and upper limits of 95% bootstrapped CIs

× #target × #Repetitions). Each experiment lasted around one hour.

On completing the experiment, we asked the participants to rank

the surfaces and complete the Likert-item questions.

Analysis. We report results using estimation techniques (i.e.,

emphasizing on effect sizes and confidence intervals rather than p-

values
3
) as recommended by the APA [15]. We, therefore, assess the

differences between two populations by depicting the differences

of their means. All error bars depicted in the figures represent

bootstrapped 95% CIs.

4.1 Results
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Success rate. Overall, the participants were very accurate on

every surface, with an average success rate of 95.42% (Figure 4).

As we can see at the bottom of Figure 4a, the CIs of the differences

of the means are large and near or even crossing zero, thus showing

no evidence of a difference. If we narrow the focus to the accuracy

reached for each scale (Figure 4b), we observe little evidence of the

participants performing better on the Hard surfaces using 16 levels

(S16). This first observation indicates the surface compliance does

not have an effect on the success rate. Moreover, it is surprising

to see that the participants reached high accuracy for all scales,

which hints they might still be very accurate with denser scales.

Selection time.We depict the selection times for each surface

on Figure 5. We can observe clear differences between the surfaces:

selections with the Soft are slower (despite rather small ∼0.2s). The
differences between the means depicted on Figure 5 display rather

strong evidence of this difference. This result indicates that using

the Soft surface, participants needed more time to reach the levels

or to stabilize on an individual level before releasing their finger. If

this interpretation is correct, we should observe differences in the

crossings produced by the participants.

Crossings. We depict the crossings produced for each surface

and target on Figure 6. We can observe an interesting pattern:

the Soft surface leads to more crossings only in high force levels

3
Analyzing results with null hypothesis significance testing (NHST) is increasingly

being criticized by statisticians [2, 12, 19] and HCI researchers [3, 13, 14, 24]. The term

effect size here simply refers to the measured difference of means. While we make use

of estimation techniques, a p-value approach reading of our results can be done by

comparing our CIs spacing with common p-value spacing as shown by Krzywinski

and Altman [27] and we provide the empirical data here https://osf.io/v5dtk/.

https://osf.io/v5dtk/
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(i.e., High and Very High, Figure 6-bottom). We also observe little

evidence of a difference between the Soft and Hard surfaces for

Medium values.

User preference. When asked to rank the surfaces following

their personal preference, the Hard surface was most frequently

ranked first (Hard-12,Medium-7, Soft-5). The Soft surface was most

frequently ranked second (S-14, M-10, H -7) while the third place

was more even (M-7, S-5, H -5). However, we do not find evidence

of a pattern in the ranking, implying the order of the ranking varied

across participants (differences of the means: Soft vs. Medium 0.0

[-0.46, 0.38], Medium vs. Hard -0.29 [-0.71, 0.16], Soft vs. Hard -0.29

[-0.67, 0.13]).

Apparently, different participants appreciated the Soft and Hard
surfaces for the same reasons; they provided a good control (Soft
"felt more in control" P24, "more control using the soft surface" P19;

Hard "I can achieve better accuracy" P22, "Stiff surface feels like

giving more control over the pressure" P7). Some participants re-

marked that the Soft surface was accurate in low values ("soft one is

preferred for low values" P9, "the soft one is good for the smaller val-

ues" P1) but inaccurate in high values ("on the high values its kind

of uncomfortable" P1, "too inaccurate to select high values" P13,
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"especially difficult to achieve accuracy around the maximum pres-

sure" P22).

This variability in the preferences is also noticeable in the results

of the Likert-scales (Figure 7). Our results show a trend that the par-

ticipants found the Soft surface to be more comfortable (Figure 7b),
but they perceived it as less accurate than the Hard, probably as

result of the difficulties in targeting high force levels. The three

surfaces were comparably demanding.

5 DISCUSSION
We discuss in this section the results of the experiment by focusing

on the two primary outcomes: we only observed a small effect of the

surface compliance on the user performance, and observed higher

force input capacity than previously reported in the literature. We

offer an explanation derived from contact mechanics of the fingertip

for the differences observed.

5.1 Small Effect of Compliance
We did not find evidence of a difference in the user accuracy across

surfaces. This primary outcome suggests that interaction models

used on rigid surfaces transfer to compliant surfaces. However, we

observed that targeting high force levels on compliant surfaces was

more challenging (i.e., higher selection times and more crossings).

While we observed differences between the soft surface and the

others, one can wonder why we do not observe such differences

between the medium surface and the others. Despite the three

surfaces feel equidistant, the relationship between a change in

physical parameters and the corresponding perceived magnitude is

typically non-linear [48]. The medium and hard surfaces are closer

in the physical space than the medium and soft surfaces, as their

Young’s moduli indicate.

It is important to note that cutaneous cues were reported to dom-

inate kinesthetic cues in tactile perception of sample softness [47].

Assuming that the cutaneous mechanoreceptors sense pressure, we

need to discuss how the sensed contact pressure increases with

increasing applied force. The derivative of pressure with respect to

force (Equation 1) decreases with increasing force and with decreas-

ing elastic modulus. The higher the force and the more compliant

the samples, the less pressure increase is sensed when the force is

increased. These arguments are directly reflected in the calibration

curves of the pressure sensor (Figure 2-bottom). Hence, the tactile
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Table 1: Comparison of results from the literature to ours. We focus on the results obtained with the 20-levels scale. By con-
textualizing our results, we highlight the higher force input capacity observed in our study.

Study Our study Cechanowicz

et al. [5]

BackXPress

[8]

Mizobuchi

et al. [30]

McLachlan

et al. [29]

Pressure

Widgets [36]

PressureFish

[41]

Wilson

et al. [57]

Technique Quick Release QR Tap Dwell Tap QR Dwell QR

Force Range

(Newton)
0-5.51 [4.80, 6.57] NR 0-4 0-4 0-10 NR NR 0-3.5

Level Number 20 12 7 10 10 12 16 10

Success Rate (%) 94.7 [93.5, 95.8] 58.0 69.4 ∼89.0 89.3 ∼89.0 ∼72.0 ∼64.0
Selection Time

(s)
2.86 [2.78, 2.95] ∼3.30 3.50 ∼4.80 2.89 ∼0.80 ∼1.65 ∼2.45

Crossings 2.58 [2.41, 2.78] ∼2.6 NR NR NR ∼0.95 ∼0.45 4.7

input characteristic for the feedback requested from the user be-

comes flat for high force levels and compliant samples, making the

task more difficult.

This highlights a crucial interplay between the sensor’s output,
the compliance of the surface, and the visual mapping. Although we

mapped the sensor’s output to a linear response, this output remains

prone to jitters in high force levels, even more as the surface com-

pliance increases. To counter this effect, it is important to carefully

design the visual mapping accordingly. Previous work proposed

various alternatives [5, 36], but did not contextualize their results

with a discussion of the sensor’s output. As this output changes

on soft surfaces, this discussion becomes even more relevant. We

only evaluated a linear visual mapping in our study, thus we are

missing data to assess the impact of other mappings. We conjecture,

however, an exponential discretization of the force scale would

improve the accuracy on more compliant surfaces by cancelling

out jitter. Further research is needed in this direction.

Studies that investigated the compliance of material reported

that users prefer interacting with soft materials [25, 26], although

they do not perform better using them. We do not observe clear

evidence of a preference for soft surfaces but a trend that partici-

pants perceived the soft surface as more comfortable. However, the

participants felt less accurate when using a soft surface in general.

5.2 High Input Capacity
Surprisingly, we observed very high accuracy even using dense

force scales of 20 levels; on average, the participants completed

95.2% of the selections correctly throughout the experiment. It is

important to note we reached saturation in this experiment, i.e., we

observed high accuracy with the densest scale, which indicates the

force input capacity might be even higher. This observation con-

trasts with results from the literature. Previous work reported user

performance greatly decreases for scales denser than 10±2 levels.
To give a clearer understanding of this difference, we compare most

relevant previous work to ours in Table 1.

We note two main factors that might explain this difference:

the force range and the selection technique. While many studies

did not report the force range and others used a fixed force range

(see Table 1), we adapted it to each participant to make the task

more comfortable for them. This resulted in wider average force

spans. Also, we implemented a quick release selection mechanism

following precise guidelines from Corsten et al. [10]. In contrast,

other studies do not specify the implementation of this selection

mechanism [5, 36]. In addition, quickly releasing the finger is less

prone to jitters and crossings than dwelling, hence our participants
likely benefited from this mechanism in denser scales. We also

explain the shorter selection times we observedwith 20-levels scales

by this optimized selection technique. Based on these juxtapositions,

we conclude force input has been underestimated so far; its input

capacity is higher than previously expected provided an appropriate

calibration scheme is used. These results highlight the potential of

using force input on various surfaces.

6 IMPLICATIONS
When designing interfaces on arbitrary surfaces, the input method

is typically spatial. Systems which use force input are comparatively

rare. This is unfortunate as force input is a compelling means to

provide subtle input requiringminimal movements in a wide variety

of contexts. For instance, one could interact on the cheek [40]

or sleeve [35] to control AR goggles and input text using force

[59], interact on the armchair of an augmented sofa [54, 58] to

control a TV, or leverage force input in the context of thumb-to-

finger interactions [42] (Figure 8). One explanation of why this is

seldom done is because the throughput is relatively low. Our study

suggests that this general consensus might be wrong, and that

carefully implemented force input devices provide a much higher

input fidelity than is generally assumed in the HCI community.

This conclusion should come as no surprise to musicians who

regularly demonstrate high level of force control when they use

force tomodulate musical expression. In fact, themusic industry has

embraced force input with pressure sensitive input devices such as

the Joué Keyboard [22], Roli’s Seaboard [38], or Sensel’s Morph [39].

Although such instruments typically rely on continuous input in

contrast to the discrete tasks we studied, our study results highlight

the high expressivity that force input enables. Interestingly Sensel’s

Morph and the Joué Keyboard provide users with a relatively rigid

interaction surface, while Roli’s high-end Seabord is soft. In fact

soft is one of the selling points of the Seabord, often used as the

first word to describe the device. But is soft truly better?

Our analysis showed no evidence that soft is better for force

input, but neither is it worse than rigid. This suggests that when

designers choose the rigidity of the input device they can focus

fully on the application context or user preferences, without wor-

rying that choice of material will have a significant impact on user

performance. Similarly, the results also indicate that interaction
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Figure 8: Use cases of force input on soft surfaces. a) Using the cheek [40] or an augmented jacket [35], the user can interact
with AR goggles to input text [59]. b)With an augmented sofa [54], the user can control a remote TVwithminimalmovements.
c) Leveraging force input for thumb-to-finger interactions [42] minimizes finger movements to maximize the input capacity
over space.

methods can be transferred between devices of varying compliance,

again providing the designer with a freedom of choice.

However, to fully leverage this freedom of design, mapping and

calibration should be given special attention in sensor implementa-

tions:

• Mapping. There are several mapping steps which occur. The

first is mapping from the sensor output to the perceptual

experience of force, i.e. the visual mapping. Previous work

has shown that optimizing this mapping improves input

performance [5, 36, 41], but did not discuss how it should

adapt to the sensor’s output. This knowledge is important

because on compliant surfaces, the force-displacement curve

of the material affects the sensing device, which also depends

on the sensor used. Which brings use to the second mapping

step, mapping the compliance of the surface to the sensor’s

output. Designers must carefully consider this mapping step

to design comfortable force interactions on various surfaces.

• Calibration. To enable comfortable force interactions, design-

ers need to consider calibrating their devices to the users’

capabilities. In our study, we observed that users are com-

fortable with different force ranges and that there might be

a trend these force ranges change depending on the surface

properties. Furthermore, as high force levels lead to more

demanding efforts on compliant surfaces, designers should

privilege lower force levels in this context by adapting the

force scales (e.g., non-linear distributions).

Our final recommendation is to use the force. A powerful ad-

vantage of force over other input methods is that it only requires

fingertip-sized interactive areas and leverage subtle interactions.

Besides, our results indicate its high input capacity makes it an

interesting supplement or even alternative to touch in various ubiq-

uitous contexts. Indeed, while augmenting tiny parts of furniture

or clothes would constrain touch interactions, it could attenuate

false activation issues while leveraging minimal finger movements

using force input. We strongly encourage designers to think beyond

touch interactions and leverage force input on various surfaces.

7 LIMITATIONS AND FUTUREWORK
Applying Normal Forces with the Index Finger. Our study focused on

normal forces applied vertically using the index finger. Hence, it is

unclear how our results transfer to multi-finger interactions like

squeezing or pinching a material [4, 33, 37], or using one finger to

press on other fingers (e.g., pressing two fingertips together).

Silicone Surfaces. Soft interfaces consist of various types of mate-

rials [4]. We focused on silicon surfaces as it allowed us to control

the Young’s modulus of these surfaces while facilitating the replica-

bility of our results. However, many soft interfaces have integrated

sensors, use other materials, or simulate compliance following spe-

cific patterns that provide non-linear compliant feedback [4]. As

the compliance seems to only have a small effect on the user per-

formance, non-linear compliant behaviors should not differ. Still,

further investigations are required.

Visual Mappings. We linearized the sensor’s output to minimize

biases linked to its inherent characteristics, and used a linear visual

mapping accordingly. Our results indicate that selections in high

force ranges suffer from such a mapping and would likely benefit

from an exponential mapping. Future work should address both

mappings in more details to compensate for high forces on soft

surfaces and likely enhance the input capacity.

Comparison to other Input techniques.We highlighted the high

input capacity of force input and showed its potentials as an in-

dependent interaction means. However, it remains unclear how

force input compares to other interaction means, and whether it

provides some benefits over them. While we believe force input is

a great complement or alternative to touch, further studies should

investigate this claim in more detail.

8 CONCLUSION
We presented a user experiment investigating the effects of sur-

face compliance on force input for visual targeting performance.

The results show evidence of higher input capacity than reported

previously in the literature, and that selecting high force levels on

soft surfaces is more demanding. We infer from these results that

previous findings on rigid surfaces transfer to soft surfaces. Our
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results show the potential of force input as a complement or alter-

native to touch in interfaces for ubiquitous computing, and point

out the interplay between the pressure sensor’s output, the surface

compliance, and visual mapping that designers must consider when

designing force interactions on soft surfaces. Based on these results,

we presented use cases as examples to encourage designers to think

beyond conventional touch input and leverage the power of force

input on soft surfaces.
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