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Figure 1: Scene2Hap is an LLM-centered system that automatically generates vibrotactile feedback for full VR scenes. It 
combines LLM-Based Haptic Inference, which extracts semantics and physical context of objects from multimodal scene data, 
with Physics-Inspired Haptic Rendering, which models how vibrations propagate and attenuate across objects in the scene, 
based on their LLM-inferred properties and physical context. 

Abstract 
Haptic feedback contributes to immersive virtual reality (VR) expe-
riences. However, designing such feedback at scale for all objects 
within a VR scene remains time-consuming. We present Scene2Hap, 
an LLM-centered system that automatically designs object-level 
vibrotactile feedback for entire VR scenes based on the objects’ se-
mantic attributes and physical context. Scene2Hap employs a mul-
timodal large language model to estimate each object’s semantics 
and physical context, including its material properties and vibration 
behavior, from multimodal information in the VR scene. These esti-
mated attributes are then used to generate or retrieve audio signals, 
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subsequently converted into plausible vibrotactile signals. For more 
realistic spatial haptic rendering, Scene2Hap estimates vibration 
propagation and attenuation from vibration sources to neighboring 
objects, considering the estimated material properties and spatial 
relationships of virtual objects in the scene. Three user studies con-
firm that Scene2Hap successfully estimates the vibration-related 
semantics and physical context of VR scenes and produces realistic 
vibrotactile signals. 
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1 Introduction 
Designing 3D virtual worlds can be a tedious and time-consuming 
process, considering the number and diversity of objects present in 
realistic virtual reality (VR) scenes. To enable VR designers to gener-
ate these 3D virtual worlds in a scalable way, recent approaches have 
proposed using artificial intelligence (AI) or large language models 
(LLM) to automatically design their visuals, audios, or behaviors 
for a full scene comprising multiple virtual objects [20, 33, 72, 76]. 

However, designing the haptic properties of VR scenes remains 
challenging. Researchers have proposed generative machine learn-
ing models to design haptic signals from manually formulated text 
prompts or from images, for instance, with generative adversarial 
networks [83, 84] or LLMs [49, 77]. While these studies provide 
valuable insights regarding the automatic generation of haptic sig-
nals, they do not encompass two aspects essential to supporting 
scene-wide haptics: Firstly, they do not leverage the full semantic 
information of objects present in the VR scene. For example, a pot 
in a kitchen scene might not vibrate if found in a cupboard, yet it 
might vibrate intensely when boiling water on a stove. Secondly, 
they do not consider the physical context of objects and the rela-
tionships between multiple objects in the scene. For example, if a 
smartphone buzzes on a table, the actual vibration felt by the user 
depends on where the user touches the table and on the table’s 
material properties; vibrations attenuate more quickly on a leather 
table than on a glass table. We believe that understanding object 
semantics and physical scene context is crucial for advancing haptic 
design in VR. 

To overcome these limitations, we propose Scene2Hap, an LLM-
centered system that automatically designs object-level vibrotactile 
feedback of an entire VR scene based on the objects’ semantic at-
tributes and physical contexts. In this work, we specifically focus 
on generating vibrotactile signals – the most frequently used form 
of haptic feedback in VR – that are triggered by active sources in 
the VR environment, such as machines or vibrating objects. For a 
given VR scene, Scene2Hap leverages a multimodal LLM to auto-
matically estimate each object’s semantics (e.g., whether and how 
the object vibrates) and material properties (e.g., density). It queries 
the LLM using the object’s multimodal information present in the 
scene (e.g., images, name). We call this process LLM-Based Haptic 
Inference. The inferred object properties are used to create a plau-
sible audio signal, which is then used as a vibrotactile signal after 
passing through a low-pass filter with a cutoff frequency of 250 Hz. 
Scene2Hap furthermore calculates a realistic vibrotactile signal, felt 
at the specific point the user touches in the scene, by considering 
the object’s physical context: neighboring objects and the propaga-
tion of vibration across objects depending on their LLM-estimated 
material properties. Rather than assigning fixed vibration signals, 
Scene2Hap modulates them in real time, based on the user’s touch 
location and the material properties inferred by the LLM. We call 
this process Physics-Inspired Haptic Rendering. The system delivers 
independent vibration feedback to each hand through handheld 
vibrotactile devices. 

Results from three studies revealed that Scene2Hap (1) could 
successfully infer the semantics and physical contexts of objects in 
VR scenes; (2) significantly contributed to providing immersive VR 
haptic experiences by improving the sense of materiality and spatial 
awareness with vibration propagation and attenuation in the scene; 
and (3) successfully enhanced the overall user experience when 
the user interacts in a full VR scene designed with our end-to-end 
pipeline. 

In summary, Scene2Hap proposes to consider scene-wide context 
for haptic rendering in VR, providing LLM-based haptic inference 
and physics-inspired haptic rendering in a novel architecture. These 
contributions position Scene2Hap as a new direction for scalable 
haptic design – one that links semantic inference with physics-
inspired modeling to generate adaptive and realistic feedback for 
full VR scenes. We believe this hybrid approach can help make rich, 
real-time haptics a default capability in future virtual and mixed 
reality experiences. The main contributions of this work are: 

• A novel system architecture, Scene2Hap, that automatically 
designs object-level vibrotactile feedback for full VR scenes 
by combining semantic inference and physics-inspired mod-
eling. 

• LLM-based haptic inference, which estimates semantic and 
material properties of virtual objects from automatically 
extracted multimodal scene data. 

• Physics-inspired haptic rendering, which modulates vibro-
tactile feedback in real time based on inferred material prop-
erties, spatial arrangement, and user contact position. 

• Empirical validation in three user studies showing that Scene2Hap 
successfully estimates the vibration-related semantics and 
physical context of VR scenes and produces realistic vibro-
tactile signals. 

2 Related Work 
Our work builds on the intersection of three areas: haptic design 
for VR scenes, machine learning-based haptic generation, and prop-
agation of haptic signals in physical context. 

2.1 Haptic Design for VR Scenes 
Designing haptic attributes for VR experiences is a very complex 
task due to the need for extensive knowledge [42, 65, 70]. Vari-
ous GUI-based haptic design tools have been proposed to make 
haptic design easier. They provide rich functions with the VR hap-
tic designers, such as creating a new haptic signal from low-level 
parameters (e.g., amplitude, frequency, and spatiotemporal move-
ment) [23, 36, 55, 67, 69, 85], editing existing haptic signals [38, 66], 
triggering a haptic signal in response to a specific event [66], and 
building a library of haptic signals [37]. For further rapid proto-
typing of haptic signals for VR scenes, in-situ VR haptic design 
methods based on designer-defined cues have also been proposed. 
These allow for designing and testing haptic signals directly in 
a VR scene, such as designing temporal signals for a hand-held 
haptic feedback device through the designer’s vocalization [22] and 
designing spatiotemporal haptic signals for the whole hand based 
on the designer’s spatial input and the hand’s posture [78]. 

While these approaches have made haptic design more accessible, 
they still rely on manual effort to create and assign haptic signals to 
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individual objects. This becomes impractical in complex scenes with 
many interactive elements. Scene2Hap addresses this limitation by 
automating object-level haptic design using LLM-based inference, 
enabling scalable haptic generation across entire VR scenes without 
requiring low-level parameter tuning or manual signal authoring. 

2.2 Machine Learning-Based Haptic Generation 
To reduce the manual labor of haptic design, some recent works 
have proposed the automatic generation of haptic rendering sig-
nals using machine learning (ML) algorithms. Typical approaches 
have adopted generative adversarial networks to generate tex-
ture vibrations from image textures or material attributes [10, 13– 
16, 48, 83, 84]. Heravi et al. proposed an ML architecture to gen-
erate texture signals in real-time based on the user actions (force, 
speed) [29]. Faruqi et al. adopted a variational autoencoder to gen-
erate physical texture designs for 3D-printed objects [26]. 

Some very recent works started to leverage emerging LLMs to 
generate haptic signals from more free-form inputs, such as gener-
ating temporal vibrotactile signals from text prompts [49, 56, 77], 
generating spatiotemporal tactile patterns for gesture or emotion 
input [64, 73], and rendering appropriate thermal feedback based 
on a video context [57]. Conversely, LLMs have also been employed 
to interpret vibration signals into a textual description [31, 32]. 

Although ML and LLM-based approaches have enabled auto-
matic haptic generation from images or text prompts, they typically 
operate outside the context of full VR scenes and require man-
ual inputs for each object. As a result, they fail to capture how 
object semantics are shaped by scene context or how objects in-
teract physically. Scene2Hap overcomes these issues by extracting 
structured, multimodal data from the scene and using chained LLM 
components to infer both semantic and physical object attributes 
in context, allowing for more automatic and context-aware haptic 
design. 

2.3 Propagation of Haptic Signals on Surfaces 
While the approaches discussed so far automate the generation of 
individual haptic signals, they treat objects in isolation and ignore 
how physical relationships between objects affect tactile perception. 
In particular, they do not account for how vibrations propagate 
across surfaces – an important factor for creating spatially coherent 
haptic feedback in VR. We next review work on vibration propaga-
tion to highlight this gap. 

In a real-world scene, the vibrations generated by an object 
propagate through surfaces, a fact that is underestimated when 
designing haptic feedback for VR scenes. To the best of our knowl-
edge, the impact of this vibration propagation on tactile perception 
has not been investigated yet for interactive VR experiences. How-
ever, studies in the sensory substitution domain showed increased 
spatial awareness among participants when representing locations 
of remote objects using vibrotactile signals [30, 40, 86]. Hence, we 
believe that considering the propagation and attenuation of vibro-
tactile signals while touching tactile surfaces in VR can influence 
multiple aspects of tactile perception. 

The material’s mechanical properties, such as its density, elas-
ticity, and structural composition, can influence the speed and 
intensity of this propagation [2, 19, 39, 50, 62, 63, 80]. For instance, 

vibrations propagate better through rigid and dense materials (e.g., 
metals) than soft and porous materials (e.g., rubber). To analyze 
vibration propagation, different structures are categorized based on 
their geometry and how they deform under loads [62, 79]. The 
most commonly investigated structures include plates [12, 80], 
strings [3, 17], bars [9, 61], shafts [82], membranes [62], shells [47], 
and beams [5, 25]. Propagation in each of these types is described 
by a different analytical model. Furthermore, the analytical solution 
can vary depending on the boundary conditions, e.g., whether the 
structure is free, simply supported, or fixed at its ends [62, 80]. To 
achieve the real-time behavior required for VR experiences, we sim-
plify these mathematical and geometrical complexities and focus 
our approach on plates. We chose plates due to their vast availabil-
ity in everyday home and office appliances. The goal is to provide 
a generic approach applicable to any material by providing an at-
tenuation ratio for the vibration propagation based on the physics 
of vibration [19, 28]. 

While prior work has modeled vibration propagation for engi-
neering applications, its relevance to VR haptic design has been 
largely overlooked. No existing system uses physics-inspired mod-
eling of vibration propagation based on object material properties 
to modulate real-time haptic feedback. Scene2Hap introduces this 
missing link: it uses LLM-inferred material parameters to simu-
late spatially dependent attenuation, allowing vibrations to propa-
gate through the virtual environment in a way that is perceptually 
grounded and responsive to user interaction. 

3 Scene2Hap 
Scene2Hap is an LLM-centered system that automatically designs 
object-level vibrotactile feedback for entire VR scenes, based on 
object semantics, physical properties, and spatial context. Its archi-
tecture is the first to use an LLM to extract information for haptic 
modeling from the VR scene, and uses this information for physics-
inspired modeling for real-time user interaction. It operates at scale 
and without requiring manual authoring. 

Scene2Hap begins by automatically extracting multimodal data 
from the existing VR scene. This data is used to drive a sequence of 
LLM components through prompt chaining. Their output provides 
the basis for two complementary strategies for haptic generation: 
(1) at startup, semantic descriptions of vibrating objects are used to 
retrieve or generate appropriate audios, which are then assigned 
to objects; and (2) during runtime, material properties, spatial rela-
tionships (represented as a contact graph), and pre-assigned audio 
signals are used to dynamically generate context-aware vibrations 
based on where the user is touching the scene. This architecture 
enables the generation of plausible vibration signals for each vi-
brating object in the scene, and it allows for vibration to propagate 
to neighboring objects in the scene based on spatial arrangement 
and material properties. When the user touches objects using stan-
dard VR controllers, the contextually correct vibration is generated 
in real-time. Overall, this transforms visual-only scenes into mul-
timodal experiences that reflect both the physical and semantic 
structure of the environment. 

In the following sections, we first describe LLM-Based Haptic 
Inference, which involves structured multimodal data extraction 
from VR scenes and prompt chaining using multimodal LLMs. This 
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Figure 2: Architecture of Scene2Hap: (1) At startup, LLM-Based Haptic Inference uses a sequence of LLM components to 
automatically infer each object’s semantics, material properties, and vibratory behavior from multimodal information extracted 
from the VR scene. (2) During user interaction, Physics-Inspired Haptic Rendering generates contextually correct vibrotactile 
feedback in real-time based on the inferred objects’ vibratory behavior, material properties, and spatial configuration in the 
scene. 

is followed by a brief description of how audio signals can be re-
trieved or generated. We then discuss how Physics-Inspired Haptic 
Rendering employs the information inferred in the previous step 
for physics-inspired generation of vibrotactile output based on user 
actions, estimated material properties, and the object’s context in 
the scene. A full system overview is shown in Figure 2. 

3.1 LLM-Based Haptic Inference 
Here we discuss the activities Scene2Hap performs at startup, once 
for the VR scene. This includes methods used for extracting data 
from VR scenes, and the tasks, purpose, and architecture of the 
chained LLM components we use, as each component is listed 
in Figure 2. The quality of the resulting data is evaluated in Section 
5.1. 

3.1.1 Automatic Data Extraction. We use multiple strategies to 
collect information at different levels of abstraction. This includes 
Scene Information (global context and aggregated scene attributes) 
to ensure that all LLM responses are contextually appropriate, and 
Object Information (properties of individual objects) used to gen-
erate material properties and inform the semantics of the object’s 
vibratory behavior. An overview of the data sources used can be 
found in Figure 3, in gray. 

Scene Information. Scene2Hap collects two high-level inputs to 
characterize the overall environment: the Scene Name and a set of 
Scene Images. Since the Scene Name is developer-defined and often 
unreliable, we supplement it with Scene Images, which are screen-
shots captured from multiple angles within the VR environment. 
Details on these angles are provided in the Implementation section 
below. 

Object Information. Scene2Hap collects visual and geometric 
information for each object to support semantic interpretation and 
material estimation. Two image types are used: the Isolated Image, 
showing only the target object from multiple angles, and the Context 
Image, captured from the same angles but including surrounding 
objects. In context images, a pink outline is automatically added 
to mark the target object to help the LLM visually disambiguate it. 
These visual inputs are used to identify what the object is and how 
it is used within the scene. 

Alongside the images, Scene2Hap provides structured data. The 
Object Name is a predefined label provided by the developer of 
the VR scene, often ambiguous or generic. The Size consists of 
three numerical values in meters representing the dimensions of 
the object’s dominant surface—such as a tabletop of a table—by 
raycasting within the 3D mesh’s bounding box and calculating its 
median values. The Relative Height gives the vertical offset between 
the object’s bottom surface and the lowest object in the scene, which 
helps distinguish ambiguous elements—for example, identifying a 
flat surface labeled “Plane” as a floor rather than a wall or ceiling. 

3.1.2 LLM Workflow and Components. While the data that can be 
automatically extracted from a VR scene is rich, it requires further 
processing to be useful for haptic feedback design. Humans can 
intuitively infer which objects might emit vibrations or what mate-
rials they are likely made of, but such information is not explicitly 
available in the raw data. To bridge this gap, we automate the fi-
nal step of data enrichment needed for full-scene haptic authoring 
through prompting a multimodal LLM. 

To inform the design of our architecture, we initially experi-
mented with a straightforward, simple prompt (cf. Appendix A.1). 
This takes the above extracted information as input and directly 
prompts the LLM to estimate whether the object vibrates, to indicate 
its material properties (size, density, Young’s modulus, and Pois-
son’s ratio), and to describe the object’s vibration using a free-form 
sentence and keywords. We identified four major sources of incor-
rect results: 1) The LLM usually did not consider object semantics 
in the scene context. For instance, a miniature toy truck was judged 
to vibrate as a real truck, despite its small size and positioning on 
a desk. 2) Mechanical vibration originating from adjacent objects 
was wrongly considered as originating from the object itself. For 
instance, a mug on a desk was considered to vibrate, because "Mugs 
can vibrate when placed on a vibrating surface or due to external 
forces" . 3) Generated vibration descriptions were often ambiguous, 
especially missing "what object" and "how" it vibrates. 4) Object 
dimensions were often incorrectly assessed. Notably, zero thickness 
was often assumed for surfaces because Unity developers frequently 
use flat meshes with zero or close-to-zero thickness for boundary 
surfaces (e.g., floor, ceiling, wall). Informed by these findings, we 
developed the final prompting scheme to explicitly analyze object 
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Figure 3: LLM-based haptic inference estimates the haptic properties of virtual objects by using an LLM workflow comprising 
four chained LLM components: Scene Analyzer, Object Analyzer, Material Property Estimator, and Vibration Describer. The 
images show one specific example. 

semantics within the overall VR scene, to infer physically plausi-
ble dimensions despite potentially incorrect data in the VR scene, 
and to generate more specific vibration descriptions by explicitly 
considering the object category and its usage. 

Figure 3 illustrates the final LLM workflow. To ensure simplicity 
and maintainability of the LLM-based system1 , our architecture 
adopts prompt chaining using four LLM components, each respon-
sible for a specific subtask: the Scene Analyzer infers the global 
context of the scene, the Object Analyzer identifies relevant object 
semantics, the Material Property Estimator predicts likely material 
attributes, and the Vibration Describer generates corresponding 
haptic descriptors. Each component is prompted using a template 
(see Appendix A) that is automatically populated with multimodal 
information collected from the scene, as described in Section 3.1. 
The final output is a structured JSON object containing estimated se-
mantic, material, and haptic properties, which is returned to the VR 
system for use during runtime haptic rendering. Next, we provide 
a detailed overview of all components: 

Scene Analyzer. This component provides high-level contextual 
information for all subsequent prompts. It receives multimodal 
inputs: the Scene Name (a potentially ambiguous textual label) and 
multiple Scene Images (captured from different viewpoints in the VR 
environment). Based on these, it outputs a textual Scene Category, 
which represents the estimated type of scene (e.g., kitchen, office, 
workshop). This output is inserted into all downstream prompts to 
help improve their relevance and accuracy. 

1https://www.anthropic.com/engineering/building-effective-agents 

Object Analyzer. The purpose of this component is to infer detailed 
semantic and contextual information about each object, which is 
used in more refined downstream prompts. It receives a combina-
tion of structured and multimodal inputs. The Scene Category, as 
determined by the Scene Analyzer, as well as Isolated Images and 
Context Images. These are complemented by textual information 
including Object Name, Size, and Relative Height, as discussed in 
Section 3.1.1. 

The Object Analyzer outputs several attributes: a textual Object 
Category and Material Category, an Estimated Size (in the same 
format as the input size) with adjustments if the raw values are 
implausible for the inferred category, a Usage description captur-
ing how the object is likely used within the scene, and a boolean 
Vibrate-Or-Not label indicating whether the object should produce 
vibration. For selected attributes such as category, estimated size, 
and vibration status, the component also provides brief justifica-
tions. This additional reasoning is necessary for interpreting and 
validating the component’s outputs, especially in cases where cor-
rections are applied. For example, it is common in VR scenes to 
model large boundary surfaces like walls or floors with near-zero 
thickness; in such cases, the LLM replaces physically unrealistic 
size values (e.g., 0.001 m) with plausible defaults consistent with 
the inferred object category. 

The prompts for this component are designed to support reason-
ing based not only on object identity and scene context but also 
on physical plausibility, including the object’s realism – e.g., is it a 
toy car or a real car? – and its potential to vibrate. In particular, the 
component is allowed to infer vibration behavior even for inactive 
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objects –such as power tools that are currently off – if it is likely 
that they would vibrate in interactive scenarios. This enables more 
complete coverage in haptic design. The output of this component 
is used to prompt the final two components and also provide the 
physics-inspired modeling step with information about object size. 

Material Property Estimator. This component receives Material 
Category as input and outputs its material properties (Density, Elas-
tic Modulus, Poisson’s Ratio) in numerical values. These values are 
used to calculate vibration propagation in Section 3.2. 

Vibration Describer. This component activates only for objects 
marked as vibratory (Vibrate-Or-Not = true). It receives the object’s 
Usage as input and produces two types of textual outputs describing 
how the object should vibrate: Free-Form Sentence, used for audio 
generation, and Keywords, combining an Object Category and a verb, 
used for audio retrieval. 

These outputs support the creation or selection of suitable vi-
bration and sound profiles to match the inferred object behavior in 
context. 

3.1.3 Audio Retrieval or Generation. The output of the Vibration 
Describer is used for identifying or generating an appropriate audio 
file for a vibrating object. We considered using dedicated text-to-
haptics generation models (e.g., [77]); however, this would have 
increased the complexity of our system, as it would also require 
generating temporally synchronized audio, which is challenging. 
Basing the vibrotactile signals on the corresponding audio enables 
audio-tactile synchronization. We do not claim any contribution 
in this area, but instead build on the strong work by [45]. We 
describe the detailed process of audio retrieval/generation in the 
Implementation section below. 

3.2 Physics-Inspired Haptic Rendering 
So far, we have explained how Scene2Hap generates semantically 
and contextually appropriate descriptions of vibration, uses these 
descriptions to retrieve or synthesize matching audio files, and 
assigns these files to objects that were identified as vibration sources. 
However, this accounts only for the origin of vibration. In real 
environments, vibration propagates beyond its source and interacts 
with the surrounding materials. 

To recreate this effect in VR, Scene2Hap uses a physics-inspired 
model for vibration propagation and attenuation that dynamically 
simulates how vibration travels through the scene. Vibration ampli-
tude is highest near the source and attenuates with distance. Hard 
materials allow vibrations to travel farther, while soft materials 
dampen them more quickly. This behavior is essential for convey-
ing information about material properties and spatial relationships 
between objects. 

The exact propagation of vibration depends both on static properties– 
such as material type and object dimensions, inferred in the previ-
ous step–and on dynamic factors that must be computed in real-
time. These include the position of objects, the user’s point of con-
tact with the scene, and the resulting attenuation of vibration ampli-
tude along the propagation path. We now describe how Scene2Hap 
handles these real-time components, including runtime tracking of 
spatial configuration, and the application of the propagation model 
to compute localized haptic feedback. 

Figure 4: Physics-inspired haptic rendering builds the scene 
hierarchy and calculates all vibration propagation paths from 
vibration sources in real-time. 

3.2.1 Real-Time Contact Graph. To identify spatial and physical 
relationships between objects in real-time, Scene2Hap builds and 
continuously updates a contact graph during runtime, treating the 
active VR scene as an undirected graph (Figure 4). In this graph, 
each virtual object is represented as a node, and an edge is created 
between two nodes when the corresponding objects are in physical 
contact. 

When the user touches an object using a tracked VR controller 
(handled in Unity), Scene2Hap uses the current contact graph to 
identify all possible propagation paths from the touched object to 
known vibration sources. These paths are determined using a depth-
first search through the graph. These paths are then passed to the 
vibration propagation model described in the following subsection, 
which calculates the vibration attenuation between neighboring 
materials based on material properties and spatial distance. This 
allows Scene2Hap to dynamically estimate the vibration amplitude 
at the point of contact, even as the user interacts with or moves 
objects during runtime. 

3.2.2 Vibration Propagation and Attenuation. The vibration inten-
sity at different points on a surface depends on how vibrations 
propagate through materials. While exact modeling of this behav-
ior is complex, computationally intensive, and remains an active 
area of research in material science and physics, interactive VR 
systems require models that are efficient enough for real-time com-
putation. To support haptic feedback at interactive frame rates, 
Scene2Hap uses a simplified yet physically grounded propagation 
model, building on the state-of-the-art [62]. As we will show in 
Study 2 below, this model offers a significant improvement over 
existing systems that do not include physics-based models. 

According to [19, 28], the attenuation ratio can have an exponen-
tial behavior, depending on the material and geometrical properties 
of the surface. As we have estimates of these material properties 
from the LLM output, we can calculate this behavior. The attenu-
ation ratio in point 𝑅 with coordinates 𝑥 and 𝑦 can be calculated 
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as: 
Γ(𝑅) = 𝑒 −𝑘 (𝑅−𝑅0 ) (1) 

where, 𝑅0 is the location of applied vibration with coordinates 𝑥0 
and𝑦0 and 𝑘 , the wavenumber, can be calculated using the following 
equation: 

𝑘 4 = 
𝜌ℎ𝜔 2 

0 

𝐷 
(2) 

Here, 𝜌 and ℎ are the density and the thickness of the surface, 
respectively and 𝜔0 is the angular frequency of the applied vibration 
at point 𝑅0. 𝜔0 is calculated by applying the Fast Fourier Transform 
to the audio file and finding its dominant frequency. 𝐷 is the bending 
stiffness and can be calculated as: 

𝐷 = 
𝐸ℎ 3 

12(1 − 𝜈 2) 
(3) 

where, 𝐸 and 𝜈 are the elastic modulus and the Poisson’s ratio of the 
surface, respectively. All required parameters for these calculations 
are provided by the Material Property Estimator. 

In Equation 1, 𝑘 is a function of the surface’s material and geo-
metrical properties and 𝑅 − 𝑅0 represents the Euclidean distance 
between the touching point and the vibration source. Once the 
attenuation ratio is calculated for point 𝑅, it is used to scale the 
amplitude of the original vibration. This modulated amplitude is 
then used to drive the controller’s vibrotactile feedback in real-time, 
matching the user’s contact location in the VR scene. When mul-
tiple vibration sources are present in the scene, the sum of each 
attenuated signal is output as the final vibrotactile signal. This cal-
culation is separately done for the position of each hand in the VR 
scene so that the user receives independent vibration feedback for 
each hand. 

The specific model was chosen for its relative simplicity and 
suitability for real-time interaction. However, the Scene2Hap archi-
tecture can also support alternative models for simulating vibration 
propagation. For example, the scene could be modeled as a mass-
spring-damper system to capture more complex dynamic behaviors. 

Next, we explain the details of our specific implementation as 
used for our evaluation. 

4 Implementation 
We implemented the Scene2Hap concept in our system prototype 
as follows: 

VR Experience. We implemented all VR scenes in Unity3D and 
ran them on a Meta Quest Virtual Reality headset. The Unity scene 
calculates the contact graph and propagation ratio in response to 
the user interaction at an interactive frame rate of 50 Hz, including 
the update of vibration signals. This calculation uses only Unity 
functions and is applicable to both static and moving objects. 

Client/Server. Scene2Hap adopts a client-server model via HTTP 
communication. An HTTP client implemented in Unity collects 
multimodal information on VR scenes or objects and sends this 
information to the server built with the Python Flask framework. 
The server prompts the LLM to process this information to estimate 
semantics and physical context and sends its response back to the 
client. Our current implementation runs both the Unity client and 
Python server on a Windows 10 PC with an NVIDIA GeForce RTX 

4090 GPU. All testing and evaluation for this paper were conducted 
on this machine. 

Collecting Multimodal Information. We automatically collect 
multimodal information for the scene and each object within the 
Unity scene, as needed for haptic inference (Section 3.1). Textual 
(Scene Name, Object Name) and numerical (Size, Relative Height) 
information is obtained by accessing each object’s metadata. For 
Isolated Images, the system automatically moves the camera object 
in the Unity scene and takes eight images of the entire target object 
at a 45-degree angle from above and below, rotating the camera in 
the horizontal plane by 90-degree increments. The camera renders 
only the target object. For Context Images, the system takes the 
target object with surrounding objects at the same angles as Isolated 
Images. Here, the system casts a ray from the camera object to the 
target object and culls objects that hit the ray. For Scene Images, 
the system takes four images at a 45-degree angle from above, 
rotating the camera in the horizontal plane by 90-degree increments. 
Here, the system calculates the center of all the existing objects 
in the scene. Similar to Context Images, the system culls objects 
that are between the camera and this center point. This culling 
process sometimes results in unnatural culling of nearby objects 
or, conversely, in showing objects in the way, due to the variety of 
the scene arrangement. While it is not critical in our evaluations, 
this issue could be addressed in future work with a more advanced 
algorithm. We used a Unity asset2 to add a pink outline to the object 
in context images. The outline sometimes does not completely 
enclose the object, depending on the setting of the target object in 
a VR scene. To deal with this case, the LLM is instructed to focus on 
the object in context images that most resemble the object shown 
in isolated images. 

LLM Workflow. We implemented an LLM workflow inside the 
Python server using the OpenAI API (GPT-4o, the model tempera-
ture was set to 0.2) and the LangChain framework3 . The multimodal 
information sent from the Unity client is organized into a format 
that can be fed into this LLM workflow. LLM-based haptic inference 
takes around 9–12 seconds per object in the current setup, based 
on Study 1’s measurement result. 

Audio Retrieval/Generation. We used Freesound API4 for an 
external web-based audio database in audio retrieval and used 
AudioGen [45] (model = AudioGen-Medium-1.5B5) for a text-to-
audio model in audio generation, running on the same PC as the 
Unity client and Python server do. AudioGen requires a GPU with 
at least 16 GB of memory6 . 

In this work, Scene2Hap first tries to retrieve up to 5 best-
matching audio files by querying the Freesound database with 
the Keywords generated by the Vibration Describer LLM component. 
If no file matches these keywords, Scene2Hap generates 5 audio 
files by feeding the Free-Form Sentence, generated by the same com-
ponent, to the AudioGen model. The system automatically removes 
silent sections at the beginning and end of the audio and keeps 
only samples longer than 2.5 seconds. Out of these candidates, the 

2https://assetstore.unity.com/packages/tools/particles-effects/quick-outline-115488
3https://www.langchain.com/
4https://freesound.org/
5https://huggingface.co/facebook/audiogen-medium
6https://github.com/facebookresearch/audiocraft/blob/main/docs/AUDIOGEN.md 

https://assetstore.unity.com/packages/tools/particles-effects/quick-outline-115488
https://www.langchain.com/
https://freesound.org/
https://huggingface.co/facebook/audiogen-medium
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finalist is selected as follows: To favor continuous sounds, the sys-
tem discards audio files with a dynamic range of more than 5 dB, 
as these would be less well-suited for continuous looping (if no 
candidate is remaining, this step is iteratively repeated, increasing 
the threshold by 5 dB until a solution is found). Finally, the system 
selects the most harmonic audio, i.e., the audio file with the low-
est spectral flatness, because high harmonic content was typically 
more pleasing than noisy files. The amplitude of this audio file is 
normalized. 

We believe that there are many promising approaches in devel-
opment and that this step will become trivial in the near future. 

Audio Processing. For simplicity, Max/MSP was used for audio 
processing. Audio and vibration playback times are synchronized 
between Unity and Max/MSP by sending a UDP message when 
each audio file is played in the Unity scene for the first time. Both 
the audio and vibration are played in a loop. Once the material and 
geometrical properties of the scene objects are identified by the 
LLM, the attenuation ratio is calculated based on the coordinates 
of the point the user touches in Unity. Every time this attenuation 
ratio of a vibration source is updated, Unity sends a UDP message 
to Max/MSP, including the attenuation ratio, the path of the audio 
file, and a hand index (i.e., 0 for left hand, 1 for right hand). The 
audio signal is converted to a vibrotactile signal by limiting the 
frequency spectrum of the applied vibration to the human tactile 
sensitivity band. Since Pacinian corpuscles are mostly responsible 
for acquiring vibrations on the skin, we applied a state variable 
filter (configured as a band-pass filter) with a resonance frequency 
at 250 Hz, corresponding to the peak detection frequency of the 
Pacinian corpuscles [21]. This filtering reduces the complexity of 
the calculation with minimal impact on perceived quality (see Study 
2). Therefore, the low and high-frequency components of the ap-
plied vibration signal were filtered out. In addition, the vibration 
amplitude was modulated using a simplified approach given in Sec-
tion 3.2. For simplicity, in this work, we calculated this propagation 
when the hand directly contacts a vibration source (attenuation 
ratio is 1) or there is only one intermediate object between the 
hand and a vibration source (e.g., feel the vibration of a phone from 
the desk where it is placed). The final vibration is calculated by 
summing all the attenuated vibration signals in Max/MSP. While 
this simple approach was effective for our system, we acknowledge 
that more advanced conversion methods exist (e.g., perception-level 
translation [46], frequency shifting [60], or pitch matching [41]), 
which remain an interesting avenue for future exploration. 

Haptic Device. The system renders vibrotactile signals using two 
Tachammer Drake HF vibrotactile actuators, one attached to the 
handle of each Meta Quest VR controller using tape and fixed with 
zip ties, such that the user can feel vibration on both hands while 
interacting in the VR scene. The vibrotactile signals were generated 
in Max/MSP and amplified using a Visaton 2.2LN Amplifier. 

5 Evaluation 
To validate Scene2Hap, we conducted three studies investigating 
(1) the capability of LLM-based haptic inference, (2) the effect of 
physics-inspired haptic rendering on the user’s haptic perception, 
and (3) the overall experience in a full VR scene. 

5.1 Study 1: LLM-Based Haptic Inference 
This study aims to evaluate how correctly the proposed LLM-based 
haptic inference can infer the attributes of each object in the scene. 
We evaluate this in two ways: (1) attributes that leave room for 
subjective interpretation (scene, object, and vibration description) 
were evaluated by human raters in an online study; (2) attributes 
that could be assessed objectively (physical material properties 
including density, elastic modulus, Poisson’s ratio) were assessed 
by comparing to known data from the literature. 

VR Scenes. For this study, we have selected six Unity scenes down-
loaded from the Unity Asset Store7 , as shown in Figure 5. We 
selected these scenes following three main criteria: (1) the scene 
includes multiple objects that are likely to vibrate and others that 
are not likely to vibrate; (2) the scene depicts a realistic setting, 
including typical objects that are commonly used in this setting; (3) 
the scene includes a moderate number of virtual objects (< 50) to 
remain feasible within the scope of the study. The selected scenes 
cover diverse VR scene settings and corresponding objects: bath-
room, kitchen, construction site, and garden. We kept the scenes 
unmodified, but made three minor changes: First, we adjusted the 
overall scale of each scene to be close to that of real-world envi-
ronments, as usually done by VR designers, helping our system 
correctly judge the size information of each object. Second, we 
added a small number of objects to evaluate the capability of our 
LLM-based haptic inference in understanding object semantics with 
even more challenging conditions (i.e., Pan and Truck in different 
usage contexts, respectively) or to make the scene appear more nat-
ural (i.e., brown plane in Construction Site scene), as summarized 
in Figure 5. Third, we removed a few common objects that were 
already present in another scene and combined some unconven-
tionally divided elements (e.g., individual floor panels) into a single 
object (floor) to focus on a more meaningful evaluation. 

We used two scenes (Bathroom 1, Kitchen 1) as scenes during 
development, for iteratively developing our LLM architecture and 
refining the prompts. The remaining four scenes were held out and 
remained unseen to be used for the evaluation of the system. None 
of the objects in the development scenes were included in the test 
scenes. We also measured the time to complete the whole haptic 
inference in each scene, as shown in Figure 5. 

Online Questionnaire. We created an online questionnaire that 
gathered participants’ subjective assessment of how correct they 
considered the results of LLM-based haptic inference on the test 
scenes to be. Participants assessed both the correctness of results 
pertaining to the entire VR scene and to the individual objects in the 
scene. For each scene, the questionnaire provided the multimodal 
information that was actually fed into the LLM (Scene Name, four 
Scene Images). It instructed the participants to rate the correctness 
of the estimated Scene Category on a 5-point Likert Scale (1=fully 
incorrect – 5=fully correct). Similarly, for each object, the question-
naire provided multimodal information fed into the LLM (Scene 
Category, eight Isolated Images, eight Context Images, Object Name). 
Participants had to rate on a 5-point Likert Scale the correctness 
of the estimated Object Category + Reason, Material Category, Us-
age, and Vibrate-OR-Not + Reason. If Vibrate-OR-Not was true, we 

7https://assetstore.unity.com/ 

https://assetstore.unity.com/
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Scene Scene Name 
(defined by the 
downloaded 
scene) 

Number 
of 
Objects 

Modifications Estimated 
Scene 
Category 

Correctness 
Rating 
(Avg (SD) on 
5-point Likert 
scale) 

Processing 
Time 
(in s) 

D
ev

el
op

m
en

t Bathroom 1 
[74] 

bathroom_ 
and_laundry_ 
showcase 

34 — Bathroom — — 

Kitchen 1 
[35] 

Demo 20 Added a pan roasting meat on the heater, a pan and a miniature refrigerator 
on the desk. 
Removed a washing machine and a dryer that were already included in 
this scene. 

Kitchen — — 

Te
st

 

Bathroom 2 
[1] 

Demo 36 Added an electric toothbrush and a hair dryer. 
Combined separate ceiling, wall, and floor panels into one object. 

Bathroom 4.90 (0.32) 415 

Kitchen 2 
[75] 

Presentation 44 Added a pan and a toy truck on the desk. 
Combined separate floor panels. 

Kitchen 5.0 (0.00) 491 

Construction 
Site 
[54] 

DemoScene 14 Added a truck and a brown plane under the truck as a ground. Construction 
Site 

4.70 (0.48) 132 

Garden 
[59] 

objects1 23 — Backyard 4.10 (1.10) 237 

Figure 5: Two scenes were used for developing the prompts for our LLM-based haptic inference module, and four test scenes 
for evaluation. The table includes detailed information for each scene. Empirical results show that the scene category was 
correctly estimated regardless of the inappropriate scene names defined in the downloaded scenes. Processing time is the time 
required to complete the LLM-based haptic inference for the entire scene. 

Object 
Category 
(Avg (SD)) 

Material 
Category 
(Avg (SD)) 

Usage 
(Avg (SD)) 

Vibrate-Or-
Not 
(Avg (SD)) 

Free-Form 
Vibration 
Description 
(Avg (SD)) 

Keyword 
Vibration 
Description 
(Avg (SD)) 

All Objects (30) 4.51 (1.21) 4.21 (1.26) 4.51 (1.20) 4.12 (1.42) 3.63 (1.47) 3.61 (1.52) 
Correct Objects (24) 4.88 (0.48) 4.33 (1.13) 4.83 (0.59) 4.61 (0.87) 4.30 (0.86) 4.34 (0.90) 
Hard-to-Judge Objects (3) 4.80 (0.48) 4.80 (0.48) 4.83 (0.38) 3.23 (1.48) 3.07 (1.46) 2.90 (1.45) 
Incorrect Objects (3) 1.27 (0.91) 2.63 (1.61) 1.57 (1.38) 1.10 (0.40) 1.30 (0.79) 1.13 (0.35) 

Table 1: Participants’ ratings of the correctness of LLM output on a 5-point Likert scale (1=fully incorrect – 5=fully correct). 
The results show that the LLM-based haptic inference successfully infers the semantics of diverse virtual objects in alignment 
with human raters for most objects. 

further asked participants to rate the correctness of the Free-Form 
Sentence and of the Keywords for vibration description. As the total 
number of objects present in all scenes would have exceeded the 
scope of the questionnaire, we selected a total of 30 objects that met 

at least one of these criteria: (1) the object was estimated to vibrate 
in the scene, (2) the object is in contact with another object that is 
estimated to vibrate, or (3) the object was added or modified by the 
experimenter for a deeper evaluation of our proposed architecture, 

bathroom_and_laundry_showcase
bathroom_and_laundry_showcase
bathroom_and_laundry_showcase
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as summarized in Figure 5. The questionnaire did not cover Size, 
Relative Height, or Estimated Size because these numerical values 
were hard for the raters to judge intuitively from images alone. 

Participants. We recruited 10 participants (aged 24 to 34; 6 identi-
fied as male, 4 as female). The online rating procedure took approx-
imately one hour. 

Results and Discussion. Participants rated the LLM-inferred Scene 
Categories as highly correct (AVG = 4.68, SD = 0.67). Considering 
that most of the Scene Names defined by the downloaded Unity 
scenes did not match the estimated scene category, as seen in Ta-
ble 1, this result indicates that the Scene Analyzer component can 
effectively estimate the semantics of VR scenes based on their mul-
timodal information. 

Table 1 shows an aggregated view of the correctness ratings of 
the LLM-inferred object properties. In Supplemental Materials, we 
share a detailed list, comprising the LLM-inferred properties and the 
corresponding participant ratings for all individual objects. The first 
row of Table 1 lists the average response for all objects. Averaged 
over all objects, the ratings indicate that the LLM could correctly 
infer Object Category, Material Category, Usage, and Vibrate-Or-
Not, with scores well beyond 4 on the 5-point Likert scale. The 
free-form and keyword descriptions of vibrations received slightly 
lower ratings of around 3.6. 

A deeper analysis of individual objects revealed that objects can 
be subdivided into three main clusters: for the vast majority of 
objects (24/30, see Supplementary Materials), the LLM has provided 
correct results that on average were rated between correct (4) and 
highly correct (5) for all items (average ratings between 4.30–4.88). 
This includes the demanding semantic assessment of whether the 
object can vibrate or not (AVG = 4.61, SD = 0.87) and the description 
of the vibration using free text (AVG = 4.30, SD = 0.86) and keywords 
(AVG = 4.34, SD = 0.90). These results indicate the Object Analyzer 
and Vibration Describer components can effectively estimate the 
semantics of various objects based on their multimodal information, 
including new types of scenes (Construction Site, Garden) that were 
not used during the development process. 

A second, much smaller cluster comprised 3 objects that were 
clearly incorrectly estimated by the LLM (average ratings between 
1.10 – 2.63), see the last row of Table 1. All these 3 objects were 
variations of the same Hand Towel Rack object present in the Bath-
room 2 scene with the same geometry. Their object categories were 
mistakenly estimated as "shower head" or "hair dryer" probably due 
to their similar appearance when looking at the object from the side. 
This misrecognition of the object category has led to consistently 
low ratings by all participants for all items belonging to these 3 
objects. 

A final cluster comprised three objects that turned out to have 
vibration properties that are hard-to-judge even for humans. Par-
ticipants were split in their assessment of whether these objects 
("frying Pan" and "saucepan" objects on the heater and "stove oven" 
in Kitchen 2 scene) should vibrate or not in the scene. This led to 
very differing ratings with a high standard deviation for Vibrate-
Or-Not (AVG = 3.23, SD = 1.48) and for both vibration descriptions 
of Free-Form Sentence (AVG = 3.07, SD = 1.46) and Keywords (AVG 
= 2.90, SD = 1.45). This split was somewhat expected because these 

cases were hard to judge: whether pans vibrate on the heater de-
pends on multiple factors, such as the heat intensity, what food 
or liquid is to be cooked, and in what quantity. Note that for the 
other properties (Object Category, Material Category, Usage), the 
Object Analyzer component worked appropriately even in the case 
of hard-to-Judge objects. 

Interestingly, the LLM was able to understand the advanced se-
mantics of virtual objects in scenes. For instance, the truck object 
with the same (but differently scaled) 3D model was successfully 
recognized as a "dump track" in the Construction Site scene and as 
a "miniature toy truck" in the Kitchen 2 scene, probably because our 
module explicitly made the LLM consider object semantics based 
on its size. Also, the pan object with the same geometry in the 
Kitchen 2 scene was recognized as "it should vibrate" when placed 
on the heater because "The frying pan may vibrate slightly due to 
the heat from the stove when cooking". In contrast, it was recognized 
as "it should not vibrate" when put on the table because "A fry-
ing pan does not typically vibrate unless it is on a heat source". The 
authors consider this LLM’s response a correct assessment, and con-
sidering the split ratings provided by study participants, this may 
indicate the LLM can even outperform human judgment in selected 
cases. Overall, these findings show the great potential of LLMs in 
automatic haptic design that considers the diverse semantics of 
objects. 

Correctness of LLM-estimated Material Properties. To high-
light that the data of material properties provided by GPT-4o is 
reasonably good (as also indicated from the literature [89]), we 
compare its output with known data from the literature. For this 
analysis, we first collected a pool of materials from Ref. [19]. We 
then asked GPT-4o to "Choose ten of them that are primarily used 
in everyday life applications". Then, we asked it to "give the Density 
(kg/m3), Elastic Modulus (N/m2), and Poisson’s Ratio of the selected 
materials". 

Table 2 shows the results. To reflect real-world variability in 
material properties and corresponding variability of measures, data 
from Ref. [19] is supplemented with data from other sources. The 
results show that the LLM’s estimations are overall within the range 
of measures from the literature. In cases where this is not the case, 
deviations are minor – the deviations identified in our sample are 
highlighted in red. Overall, this suggests that the values provided 
by GPT-4o are a reasonable foundation for basic physical modeling. 

5.2 Study 2: Effect of Vibration Propagation on 
Haptic Perception 

To understand the effect of vibration propagation and attenuation, 
we performed a second evaluation study demonstrating that the 
attenuated vibration improves user experience, may help in perceiv-
ing materiality, and clearly supports users in their spatial aware-
ness of the scene. While Scene2Hap uses both LLM prompting and 
physical modeling, the goal is not exact replication or naturalistic 
modeling, but to enhance user experience in virtual environments. 
In addition to generally improving user experience, we hypothesize 
that the correct propagation of vibration improves the perception 
of materiality and supports spatial understanding. To test this, we 
evaluate the effect of attenuated vibration propagation on user 
experience in three scenes. 
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Literature GPT-4o 
Material Density (kg/m3) Elastic Modulus 

(N/m2) 
Poisson’s Ratio Density (kg/m3) Elastic Modulus 

(N/m2) 
Poisson’s Ratio 

Aluminum 2570 − 2950 [52] 68 − 88.5 × 109 [52] 0.32 − 0.36 [52] 2700 69 × 109 0.33 
Steel 7820 − 7860 [8] 190 − 210 × 109 [8] 0.27 − 0.32 [8] 7850 200 × 109 0.30 
Copper 8930 − 8940 [51] 121 − 133 × 109 [51] 0.34-0.35 [51] 8960 110 × 109 0.34 
Glass 2400 − 2600 [68] 50 − 130 × 109 [68] 0.15 − 0.3 [6, 27] 2500 70 × 109 0.23 
Plywood 400 − 600 [81] 7 − 8.6 × 109 [81] 0.2 − 0.3 [24] 600 10 × 109 0.3 
Gypsum Board 545 − 700 [18] 0.47 − 2.5 × 109 [18] 0.24 [53] 850 2.5 × 109 0.25 
Brick 1900 − 2200 [19] 6 − 14 × 109 [58] 0.1 − 0.25 [44] 1920 12 × 109 0.20 
Asphalt 1800 − 2300 [19] 0.5 − 140 × 109 [7] 0.3 − 0.4 [11] 2300 1 × 109 0.35 
Oak 700 − 1000 [19] 2 − 10 × 109 [19] 0.33 [71] 700 12 × 109 0.30 
Plexiglass 1120 − 1150 [19, 87] 4.5 − 5.6 × 109 [19, 34] 0.35 [34] 1180 3.3 × 109 0.35 

Table 2: Comparison of LLM’s material property estimation to established measures from the literature. The values provided 
by GPT-4o fall within the ranges identified from the literature. In cases where they do not, the value is indicated in red. 

We assess haptic experience in three ways: (1) general usability, 
using the haptic experience design framework by Kim and Schnei-
der [43] (utility, causality, consistency, saliency); (2) perceived mate-
riality; and (3) spatial awareness. Each is addressed through targeted 
questionnaires following interaction with the system. 

Participants. We recruited 10 participants (aged 20 to 34; 6 identi-
fied as male, 4 as female; 9 right-handed, 1 left-handed). Each study 
session took approximately one hour. 

Scenes. Each participant experienced three VR scenes, each with a 
respective audio and vibration source: a speaker playing loud music 
on a metal table, a smartphone buzzing on a wooden table, and a 
washing machine running on a wooden floor (see Figure 6). This 
study used simplified scene settings to focus the evaluation on the 
vibration propagation and attenuation. The study used the same 
audio files and material parameters pre-generated by Scene2Hap 
for all participants. 

To ensure controlled evaluation, we defined three touch points 
on the tables (for the first two scenes) and the floor (for the third) 
at distances of 0.0 (vibration source), 0.4, 0.8, and 1.2 m from each 
source. Participants were free to reach and touch any of the desig-
nated points. Each scene played its respective audio continuously 
with constant intensity, and the synchronized vibration was played 
when the participant touched a point. Scenes were presented in 
blocks, with randomized order. 

Tasks and Questionnaire. Participants were instructed to touch 
each point under three conditions: no propagation (only the vibra-
tion source vibrates), full propagation (surfaces vibrate with the 
same amplitude as the source), and attenuated propagation (surfaces 
vibrate with attenuated intensity based on material and location). 
Each participant experienced all three conditions within each of 
the three scenes, resulting in nine trials in total. The order of scenes 
and the order of conditions within each scene were randomized. 

After each condition, participants completed a questionnaire 
using Semantic Differentials [4], with immediate ratings collected 
after each trial (here, a high score indicates that participants agree, 
and a low score indicates that they disagree; please refer to Appen-
dix B for the exact questions). They responded to six items using 
a continuous bipolar scale. The first four items – utility, causality, 
consistency, and saliency – were drawn from Kim and Schneider’s 

framework [43] and served to assess general usability. The final two 
items – materiality and spatial awareness – were added to address 
our specific hypotheses. The exact questions can be found in the 
appendix. 

Procedure. First, participants provided informed consent and de-
mographic information. They then completed a familiarization 
session, where they freely explored all three scenes and all three 
haptic conditions. The trial session lasted as long as needed for 
each participant to feel comfortable with the setup. In the main 
experiment, participants performed free exploration in each scene 
under each of the three haptic conditions. The participants put on 
a noise-canceling headphone and listened to the audio played back 
in each VR scene. After each condition, they completed a question-
naire. Participants were allowed to take breaks between scenes if 
desired. The study took place in our lab and lasted approximately 
45 minutes. Participants received compensation at the rate typical 
for our institution. 

Results and Discussion. Average results and confidence intervals 
for this study are shown in Figure 7. We will next provide the results 
for Usability, Materiality, and Spatial Understanding. 

Usability 
Looking at the descriptive statistics in Figure 7 highlights that the 
attenuated propagation condition was rated highest for all Usability 
Requirements, and no propagation was rated lowest. 

The data showed substantial deviations from normality in most 
cells (Shapiro–Wilk between 𝑊 = .69–.95, many 𝑝 < .01), homo-
geneity of variance (Levene’s test, 𝐹 (11, 348) = 2.16, 𝑝 = .016). 
Visual inspection suggested that these violations were mainly due 
to responses clustering at the endpoints of the semantic differential 
scales, resulting in skewed distributions. 

We therefore used a repeated measures ART-ANOVA [88] to 
examine the effects of Propagation (No Propagation, Full Propaga-
tion, Attenuated Propagation) and Usability Requirement Measure 
(utility, causality, consistency, saliency) on participant ratings, av-
eraged across scenes. Bonferroni-corrected comparisons showed 
that Attenuated Propagation was rated significantly higher than 
No Propagation (𝑝 < .001) and Full Propagation (𝑝 < .001). There 
was also a significant difference between No Propagation and Full 
Propagation (𝑝 = .022). This indicates that, overall, the conditions 
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Figure 6: Study 2 used three scenes to investigate the effect of our physics-inspired haptic rendering on VR haptic perception. 

with attenuated propagation lead to the highest usability, and that 
this effect was measurable for all Usability Requirements. 

Materiality 
Descriptive statistics show that all ratings for Materiality were com-
paratively low, however the condition with attenuated propagation 
was clearly rated strongest (see Figure 7). 

As the data did not meet the normality criterion (Shapiro–Wilk, 
𝑊 = .8228, 𝑝 = .0274 for attenuated propagation), the non-parametric 
Friedman test was used to examine the effect of Propagation condi-
tion on participant responses, averaging over the scenes. 

The analysis revealed a significant main effect of Propagation con-
dition, 𝜒 2 (2) = 8.22, 𝑝 = .016 with a moderate effect size (Kendall’s 
𝑊 = .41), indicating that participant responses differed signifi-
cantly across the different propagation types. Bonferroni-corrected 
Wilcoxon test identified a significant difference between full propa-
gation and attenuated propagation (𝑝 = .0117). 

The overall low materiality scores may be attributed to general 
limitations of current VR systems (e.g., no force feedback when 
touching an object). However, even though the overall ratings were 
relatively low, the propagation of vibration through the scene sig-
nificantly improved participants’ experience of materiality. 

Spatial Awareness 
Finally, we found strong differences in how propagation conditions 
affected the ratings of Spatial Awareness. Users rated the attenu-
ated propagation highly, and the no propagation condition low (see 
Figure 7). 

As, again, the data did not meet the normality criterion (Shapiro–Wilk, 
𝑊 = .7932, 𝑝 = .0120 for attenuated propagation), the non-parametric 
Friedman test was used to examine the effect of propagation con-
ditions on Spatial Awareness. The analysis revealed a significant 
main effect of Propagation condition (𝜒 2 (2) = 12.80, 𝑝 = .002), with 
a large effect size (Kendall’s 𝑊 = .64). 

Post-hoc Wilcoxon tests with Bonferroni correction showed 
that Attenuated Propagation received significantly higher ratings 
than both Full Propagation (𝑊 = 1, 𝑝 = .012, 𝑟 = .85) and No 
Propagation (𝑊 = 1, 𝑝 = .012, 𝑟 = .85). The comparison between 
Full Propagation and No Propagation was not significant (𝑊 = 6, 
𝑝 = .082, 𝑟 = .69). 

This highlights that participants experienced a strong improve-
ment in spatial awareness through the attenuated vibration. 

In summary, our findings show that attenuated vibration propa-
gation improves user experience. Usability Requirements (utility, 

causality, consistency, saliency) showed consistent improvements, 
and perceived materiality was rated significantly higher under at-
tenuated propagation. The strongest effect was observed for spatial 
awareness, with attenuated propagation clearly enhancing partic-
ipants’ reported understanding of the spatial arrangement of the 
VR scene. These results demonstrate that physics-inspired haptic 
rendering supports both material and spatial perception in virtual 
environments. 

In exit interviews, participants highlighted the immersive bene-
fits of spatially dynamic vibration. For example, P3 shared that “The 
condition with the propagation was realistic. . . it was pretty much 
real-world, I really liked it, and that was my favorite.” Participants 
also immediately saw useful applications in VR, for example, in 
searching for the source of a vibration. However, participants noted 
that the propagation of vibration might not be as relevant if there 
are strong multimodal cues, e.g., P2 noted that “The scene with the 
speaker was not really noticeable because the sound was so loud, and 
haptics. . . I could not differentiate.” 

5.3 Study 3: User Experience in Full VR Scene 
To investigate the overall user experience in a full VR scene, we 
collected feedback from participants who interacted with the VR 
scene designed with our end-to-end pipeline. 
Participants. We recruited 10 participants (aged 23 to 34; 5 identi-
fied as male, 5 as female). Each study session took approximately 
one hour. 

Scene. We used a modified version of the Kitchen 2 scene from 
Study 1. To evaluate our pipeline in an interactive and realistic 
VR experience, we modified the scene in terms of the following 
three points: (1) We added four objects (a handheld fan8 , an electric 
toothbrush9 , a smartphone10 , and a washing machine from the 
Bathroom 1 scene in Study 1). The first three objects are portable, 
allowing the user to grab or release them with the VR controllers 
and move them in the scene. (2) We removed three objects (two pans 
on the oven and a fried egg on a pan) due to the lack of consensus 
in Study 1 on whether they should vibrate in the scene. (3) We made 
the scene look more natural by adding walls and a window11 , and 
adjusting the floor size. We ran LLM-based haptic inference once 

8https://skfb.ly/oStXz
9https://skfb.ly/pwqpM
10https://assetstore.unity.com/packages/3d/props/electronics/free-smartphone-
90324 
11https://assetstore.unity.com/packages/3d/environments/apartment-kit-124055 

https://11https://assetstore.unity.com/packages/3d/environments/apartment-kit-124055
https://10https://assetstore.unity.com/packages/3d/props/electronics/free-smartphone
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Figure 7: Results of Study 2. Purple, blue, and cyan colors show the average ratings of the participants for no, full, and attenuated 
propagation types, respectively. In this experiment, four usability requirements (utility, causality, consistency, saliency) as well 
as perceived materiality and spatial awareness were probed. Significant differences from the post hoc analysis are indicated by 
* if 𝑝 < .05 and by ** if 𝑝 < .001. 

Figure 8: Study 3 used a modified version of Kitchen 2 scene (left). The vibration sources were set to the seven objects (right). 

for this scene in advance and used the common material properties 
and audio signals for all participants to ensure comparability. The 
vibration sources were set to seven objects: handheld fan, electric 
toothbrush, smartphone, washing machine, refrigerator, cooker 
hood, and microwave. 

Tasks and Questionnaires. To ensure all participants explored 
the relevant aspects of the scene, we asked them to follow a shared 
procedure. (1) They observed the scene visually for 30 seconds. 
(2) They were asked to identify which devices were turned on 
- they were encouraged to walk, touch, and continue exploring 
until all seven active devices were found. (3) They were asked to 
explore how lifting, moving, and combining portable vibrating 
objects affected the resulting vibration: they examined table and 
counter surfaces with and without mobile objects, tested vibration 
transfer by placing multiple devices on surfaces, and compared 
sensations of devices held in hand and placed on objects. 

After completing the tasks, participants filled out two question-
naires using 5-point Likert scales. The first (from Study 2) assessed 

usability (utility, causality, consistency, saliency), materiality, and 
spatial awareness. The second addressed realism, immersion, pres-
ence, clarity of feedback, engagement, and satisfaction (Appen-
dix C). Likert items were chosen instead of semantic differential 
scales, as we do not intend to make statistical comparisons between 
conditions. An exit interview was conducted with each participant 
for the qualitative analysis. These interviews were structured by the 
questionnaires: the participant and experimenter together iterated 
through all the items and together reflected on why the participant 
chose the respective response to it. 

Procedure. Participants signed a consent form, gave demographic 
information, and were briefed that some devices in the kitchen 
would produce audio and vibration. They explored freely while fol-
lowing task instructions. Afterward, they completed both question-
naires and took part in a recorded qualitative interview discussing 
each questionnaire item. 
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Data and Analysis. A chi-square test of independence indicated 
a significant association between questionnaire items (13) and re-
sponse types (5), 𝜒 2 (48) = 83.20, 𝑝 = 0.0012, suggesting systematic 
response patterns. Qualitative data were transcribed and cleaned of 
non-verbal utterances. Statements by participants were extracted. 
The rest of the analysis was conducted using affinity clustering. Ini-
tially, one author assigned clusters per question, which were used 
to better understand the Likert items, and then assigned clusters 
across questions. In a collaborative coding session, these clusters 
were reviewed together by three authors and edge cases were dis-
cussed. One author completed the affinity clustering. 

Qualitative Results Discussion. Figure 9 shows the participants’ 
questionnaire responses. Overall, participants agreed on the posi-
tive contribution of haptic feedback. The ratings show that Scene2Hap 
positively contributes to users’ perception of spatial awareness, re-
alism, feedback clarity, causality, and satisfaction; those dimensions 
received only positive ratings. Engagement, saliency, presence, and 
utility were rated positively by a clear majority of participants. In 
contrast, materiality received mixed responses. The interviews pro-
vided insights on the ratings: Some participants felt that vibration 
added to their sense of materiality – for example, understanding 
the material of a table when vibrating objects were placed on it. In 
contrast, others found that the added vibration highlighted the lack 
of materiality in other aspects. For instance, the absence of normal 
forces and the inability to distinguish between surfaces such as 
plastic or wood became more apparent once haptics was added for 
vibration sources. 

5.3.1 Resulting Themes. One cluster that emerged was around 
comparisons to the real world. Many participants emphasized 
that vibrations felt authentic in comparison to similar real-world 
sensations, such as a phone vibrating. Presence was stronger when 
vibrations carried through solid objects, as in real life. P6 stated: 
“When I hear a vibration, like my phone alarm ringing, I feel it when I 
reach out, and that is how life is supposed to work. The same with the 
toothbrush and the fridge; in my head, things should work like this, 
and that is what realism is.” Still, some participants (P1, P9, and P6, 
who otherwise appreciated the realism) highlighted that vibrations 
sometimes felt too similar and less varied than expected from real 
life. A strong anecdote came from P1, who experienced an incident 
where they almost fell because they tried to support their weight 
on a virtual chair. Reflecting on this experience, they suggested 
that vibration may have subconsciously made them believe the 
virtual world was more real: “I dropped the toothbrush, I tried to use 
the chair to get up, but there was no chair. [...] being in the virtual 
environment felt real.” 

The propagation of vibration was a major discussion point. 
Generally, participants—without being explicitly prompted—noticed 
and praised the propagation mechanism. It was described as making 
the experience feel more realistic and increasing participants’ sense 
of presence in the scene. Participants stated that as they moved 
their hands and approached objects, they could identify the vibra-
tion source. For example, P8 said: “With three items on the table, as 
I approached them the vibration got stronger and clearer, helping me 
identify the source.” Propagation also improved spatial awareness by 
helping participants understand their distance from the source. As 
P7 described: “The table had vibration. As I moved towards the object, 

vibration got stronger, and as I went away, it got weaker. That gave 
me spatial awareness.” Participants mentioned that propagation 
attracted their attention to vibrating devices, unlike non-vibrating 
ones, such as the pan, which they paid less attention to. 

Many participants used comparisons between objects to dis-
cuss haptic feedback. For example, participants 1, 4, 5, and 9 high-
lighted that vibration helped them distinguish between objects. 
However, participants 2, 3, and 6 felt that this aspect might be 
improved, stating that larger and smaller objects felt too similar. 
Interestingly, P9 reported that in one situation they could not differ-
entiate between the fan and the washing machine–here the fan was 
placed on the washing machine, and the vibration the user felt was 
the vibration of the washing machine propagating through the fan. 
Participants also highlighted that while they could distinguish the 
behavior of devices tactually, the vibration “didn’t reveal whether it 
was metal, wood, or rubber” (P4). 

Another cluster that emerged was around discussions of haptics 
in the context of other senses. Many participants highlighted the 
importance of multimodality while praising the haptics. For exam-
ple, P5 stated: “Vision, hearing, and touch all need to work together. 
The most important haptic feedback was touching the table and sens-
ing feedback from devices. Vision alone could not show differences, 
but haptics let me understand which devices were on and distinguish 
between objects like the toothbrush and cell phone.” 

A final topic that came up was the role of personalization of 
vibration. For example, P1 would have preferred that they could 
turn off the phone’s vibration. Participants 8, 9, and 10 all expressed 
the wish for personalization options. 

In summary, we see this as a strong endorsement for our Scene2Hap 
approach. Participants praised the immersion that the haptics pro-
vided. Not only was the vibration generally highlighted as realistic 
and useful, but participants also successfully manipulated vibrating 
objects and could feel how re-positioning and combining objects 
affected how vibration propagated through the scene in real time. 
Critical points were raised regarding some vibration signals that 
were felt too similar– this suggests that the fixed cutoff frequency 
chosen may not have been ideal. Similarly, the richness in vibration 
from active objects also made participants more critically aware of 
the missing haptic feedback from passive objects. The wish for per-
sonalization also highlights that additional editing or regeneration 
abilities would be a valuable addition in future iterations. 

6 Discussion 
The three evaluations jointly demonstrate the effectiveness and 
robustness of Scene2Hap. Study 1 confirmed that the system can 
accurately infer semantic and physical attributes of virtual objects 
based on automatically extracted multimodal scene data. This in-
cludes nuanced interpretations of object use and context that go 
beyond what conventional rule-based systems or object metadata 
can provide. Study 2 showed that these inferred properties, when 
used to drive haptic rendering, lead to measurable improvements in 
user experience—especially for spatial awareness, but also for per-
ceived materiality and usability. Study 3 showed that the end-to-end 
pipeline successfully enhanced the overall user experience when 
the user is interacting in a full VR scene. Together, these results 
validate Scene2Hap’s full pipeline: from automatic data extraction 
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Figure 9: Results of Study 3. In this experiment, participants filled out two questionnaires. Questionnaire A contained items for 
four usability requirements (utility, causality, consistency, saliency) as well as perceived materiality and spatial awareness (left), 
and Questionnaire B included perceived realism, immersion, presence, feedback clarity, engagement, and satisfaction (right). 

to LLM-based inference to physically grounded, perceptually mean-
ingful haptic output. 

A unique strength of Scene2Hap lies in its system architecture, 
which combines LLM-based inference with physical modeling. At 
its core, the system asks two distinct questions about each object 
in the scene: “How does it vibrate?” and “What are its material 
properties?”. The answer to the first question is used to retrieve 
or generate an audio file representing the object’s vibration. The 
answer to the second provides material properties such as density 
and stiffness, which are used in a physical model to determine how 
vibration propagates across connected surfaces. This model is then 
used to modulate and attenuate the live audio stream in real time, so 
that users feel the vibration that is appropriate to the location and 
material they are touching. This unique combination of semantic 
reasoning and real-time physical modeling enables Scene2Hap to 
generate haptic feedback that is adaptive, coherent, and requires 
no manual tuning. 

This architecture provides practical benefits for VR designers. 
Scene2Hap enables rapid deployment of haptic experiences without 
requiring manual parameter tuning or specialized domain knowl-
edge. It allows VR creators to build rich, multimodal environments 
at scale—even in scenes with many complex objects—making haptic 
feedback more accessible as a design material. 

Scene2Hap has several limitations. First, object semantics are 
currently limited to scene-level use and binary vibration behavior; 
future work could support richer object states, part-level reason-
ing, or event-based triggering. Second, while our physical model 
supports real-time propagation, it assumes simplified geometries 
and the vibration propagation to only neighboring objects. It may 
benefit from higher-fidelity models if performance allows. Third, 
while audio quality is dependent on retrieval/generation methods, 
which are outside our scope, future work could provide quality con-
trol through advanced LLM-based selection strategies or integrate 
alternative automatic haptic generation methods (e.g., [77]) into 
the Scene2Hap pipeline. Fourth, the system’s performance is depen-
dent on the specific LLM used (we used GPT-4o). While we mitigate 
potential non-deterministic outputs with a low temperature, we 
anticipate that future models will enhance accuracy and processing 
speed. This advancement may also resolve limitations regarding 

input data, potentially achieving robust performance with fewer 
text or image inputs than currently used. Lastly, our approach was 
specifically designed for experiencing haptic vibrations that are 
triggered by mechanisms, machines, or other active sources in a VR 
scene. This approach can also be applied for a wider range of ex-
pressive VR scenes, such as rendering the floor-shaking resonance 
of a virtual music concert or rendering symbolic haptic feedback 
for magical effects. In future work, we hope to extend the approach 
to haptic experiences caused by user interaction, ranging from ma-
terial properties, like friction or texture, to abstract feedback such 
as subtle UI confirmation pulses. 

7 Conclusion 
We present Scene2Hap, an LLM-centered system that automatically 
designs object-level vibrotactile feedback for entire VR scenes based 
on the objects’ semantic attributes and physical context. Scene2Hap 
comprises two main technical contributions: LLM-based haptic 
inference and physics-inspired haptic rendering. Scene2Hap per-
forms LLM-based haptic inference that employs a multimodal large 
language model to estimate the semantics and physical context 
of each object, including its material properties and vibration be-
havior, from the multimodal information present in the VR scene. 
This semantic and physical context is then used to create plausible 
vibrotactile signals by generating or retrieving audio signals and 
converting them to vibrotactile signals. For the more realistic spatial 
rendering of haptics in VR, Scene2Hap performs physics-inspired 
haptic rendering in real-time that calculates the propagation and at-
tenuation of vibration signals from their source across objects in the 
scene, considering the estimated material properties and physical 
contexts, such as the distance and contact between virtual objects. 
Results from three studies confirmed that (1) LLM-based haptic 
inference could successfully understand the semantics and physical 
contexts of various objects in VR scenes; (2) Physics-inspired haptic 
rendering significantly contributed to providing immersive VR hap-
tic experiences by improving the sense of materiality and spatial 
awareness with plausible vibrotactile signals and vibration atten-
uation; (3) End-to-end pipeline successfully enhanced the overall 
user experience when interacting in a full VR scene. 
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A Used Prompt Templates 
This appendix section introduces the prompt templates used for 
our LLM components in Study 1. The bracketed sections in these 
templates are automatically replaced with the information for each 
scene or object. 

A.1 Initial Simple Prompt 

1 Your role is (1) to recognize the contexts 
of a Unity gameobject from its name , 
size , position , and images , (2) to 
estimate the material properties , (3) 
to describe how an object should 
vibrate in a Unity scene. 

2 

3 The name of the Unity scene is {scene_name }. 
4 The sent images comprise three sets. The 

first {len_scene} images sent were 
taken from different angles in the 
scene. The next {len_isolated} images 
are isolated images that show an object 
of interest in the center part from 
different angles. The other 
{len_context} images are scene images 
that show the same object in the scene 
from different angles. 

5 The user prompt is {user_prompt }. 
6 The object name in a Unity scene is 

{object_name }. 
7 The size of the object in the scene is 

{size} in a meter unit. 
8 The object is placed at the Y position of 

{position_y} in the scene in a meter 
unit. 

9 

10 Estimate its actual size in a string format 
like '1.0,1.0,1.0'. 

11 Estimate whether the object should vibrate 
in the scene in some cases (bool). 

12 

13 Estimate its density in kg/m^3, Young 's
modulus in GPa , Poisson 's ratio , and 
damping ratio of the material category 
in float values. 

14 

15 If the object should vibrate , answer the 
following. If the object should not 
vibrate , return an empty string. 

16 Describe how the object should vibrate with 
less than 15 words. 

17 In Addition , provide keywords that describe 
the vibration by connecting two sets of 
words with blanks like '<Keyword A> 
<Keyword B>'. 

18 

19 Provide the estimated size and its reason , 
whether the object should vibrate and 
its reason , density , Young 's modulus , 
Poisson 's ratio , damping ratio , 
free -form vibration description , and 
keywords in a JSON format without any 
affixes. All structured outputs should 
be provided. 

A.2 Final Prompt for Scene Analyzer 

1 Your role is to recognize the category of a 
Unity scene from its name and images. 

2 The name of the Unity scene is {scene_name }. 
3 The images sent were taken from different 

angles in the scene. 
4 

5 Estimate its scene category in 1-2 words 
from its name and images. 

6 This category should be very specific 
without ambiguity. {scene_name} does 
not necessarily mean the correct scene 
category. 

7 The scene category should be the name of 
its environment or scene , not a summary 
of the objects in images. 

8 Take into account only the images showing 
objects clearly , and ignore the other 
images. 

9 

10 Provide the scene category without any 
affixes. If it is extremely difficult 
to estimate the scene category , answer 
'undefined '. 

A.3 Final Prompt for Object Analyzer 

1 Your role is to recognize the contexts of a 
Unity gameobject from its name , size , 
position , and images. 

2 The user prompt is {user_prompt }. If the 
user prompt is not empty , conduct the 
below estimation with the highest 
importance on the user prompt. 

3 The scene category of the Unity scene is 
{scene_category }. 

4 The object name in a Unity scene is 
{object_name }. 
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5 The size of the object in the scene is 
{size} in a meter unit. It is not 
decided which value of this size vector 
is the width , height , or depth. This 
size is a dimension of the dominant 
surface of the object. For example , if 
the object is a table with legs , the 
value is the size of the tabletop. 

6 The object is placed at the Y position of 
{position_y} in the scene in a meter 
unit. 

7 The sent images comprise two sets. The 
first {len_isolated} images are 
isolated images that show an object of 
interest in the center part from 
different angles. The other {len_scene} 
images are scene images that show the 
same object in the scene from different 
angles. 

8 

9 Estimate its object category in 1-3 words 
from its name , size , position , and 
images. However , if {object_name} 
sounds like a boundary surface (e.g., 
floor , ceiling , wall) or a room , give 
the most importance for estimation to 
its object name and ignore its size. 

10 This object category should be very 
specific without ambiguity (e.g., 
'refrigerator ' is better than 
'appliance ' in terms of clarity). 
{object_name} is not necessarily the 
correct object category. 

11 If there are multiple options for the 
object category , choose the one that is 
most likely to exist in 
{scene_category }. Try not to choose a 
category that is not likely to exist in 
{scene_category }. 

12 When you check the scene images , estimate 
the object category of only the object 
surrounded in a pink outline , and not 
consider the whole environment. If this 
pink outline does not completely 
surround an object or is not visualized 
at all in the scene images , consider 
the target object to be the object in 
the center of the scene images and most 
resembles the object in the isolated 
images. 

13 Take into account only the images showing 
some objects clearly , and ignore the 
other images. 

14 Take into account the object 's authenticity 
based on whether it is being used in a 
physically plausible way in the scene 
images and whether its size roughly 
matches the typical size of its object 
category that humans use in everyday 
environments. This size check should 
not be too strict. If this object is 
not authentic , include a word to 
describe the authenticity (e.g., 
'miniature ' if the object is too small) 
in the estimated object category. 

15 Position information can be used to 
estimate the object category , 
especially it has an ambiguous name and 
shpae. 

16 Do not estimate the object category from 
the light and reflective conditions 
because the images are taken from 
various lighting conditions. 

17 

18 If the object is a boundary surface , it is 
likely that one axis of {size} is too 
small in Unity. In that case , estimate 
the object size by replacing only that 
axis value with a typical value for the 
object category in meters and provide a 
reason in one sentence. Return the same 
value as {size} for the estimated size 
in the other cases. Note that you 
should return the value in a string 
format like '1.0,1.0,1.0'. For example , 
if the thickness of the room floor is 
too small , replace it with a typical 
value for the room floor. 

19 Estimate its material category in 1 word 
from its isolated images and object 
category. If the object comprises 
multiple materials , choose the most 
dominant material. This material 
category should be as specific as 
possible , not a general term. (e.g., 
'iron ' or 'steel ' should be used rather 
than 'metal ' in terms of concreteness). 
If the object is not authentic , 
estimate the material category based on 
the object 's authenticity. If the 
object seems a boundary surface and is 
textureless , estimate the material that 
is likely to be present in the 
{scene_category} based on its surface 
color. 

20 Estimate how the object should be used in 
the scene in one sentence from the 
scene images. If humans generally use 
the object while holding it in the 
scene , consider that case. 
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21 Estimate whether the object should vibrate 
in the scene in some cases (bool) based 
on its scene images and estimated 
usage. For example , the target object 
could vibrate due to thermal energy 
propagated from surrounding objects or 
its internal mechanism. If humans 
generally use the object while holding 
it in the scene , consider that case. If 
the target object or an adjacent object 
is an electric machine , consider the 
vibration that can occur when they are 
powered on. Do not consider the 
propagation of mechanical vibration 
originating from adjacent objects. 

22 

23 Provide the object category and its reason , 
material category , usage , estimated 
size and its reason , whether the object 
should vibrate and its reason in a JSON 
format without any affixes. All 
structured outputs should be provided. 

A.4 Final Prompt for Material Property 
Estimator 

1 Your role is to estimate the material 
properties of a material category. 

2 Estimate density in kg/m^3, Young 's modulus 
in GPa , Poisson 's ratio , and damping 
ratio of {material_category} in float 
values. Strictly check that the values 
are provided in the correct unit. 

3 Provide these numerical values in a JSON 
format without any affixes or units. 
All structured outputs should be 
provided. If you cannot estimate the 
material properties for some reason , 
assign 0 for all values. 

A.5 Final Prompt for Vibration Describer 

1 Your role is to describe how an object 
should vibrate in a Unity scene. 

2 {object_category} is used in the following 
way: {usage}. 

3 Describe how the object should vibrate in a 
simple and straightforward sentence 
with less than 15 words. This sentence 
should start from {object_category} and 
mention its vibration characteristics 
in simple words. 

4 In Addition , provide keywords that describe 
the vibration by connecting two sets of 
words with blanks like '<Keyword A> 
<Keyword B>'. The first set has to be 
{object_category }. The second keyword 
should be one verb in its base form 
related to the vibration that best 
describes how the object vibrates in 
the scene. Do not use the word 
'vibrate ' in the keywords. 

5 Provide the free -form sentence and the 
combined keywords in a JSON format 
without any affixes. All structured 
outputs should be provided. 

B Study 2 Materials 
B.1 Questions 
We used the following questions to evaluate vibration propagation. 
Each question was accompanied by a continuous line, anchored 
with “Strongly Disagree” on the left and “Strongly Agree” on the 
right. Participants marked a point along the line, which was then 
measured and recorded as a percentage. 

• Utility: Haptic feedback was able to benefit my user experi-
ence in a way that other sensory modalities cannot. 

• Causality: I could identify and describe the source of haptic 
feedback. 

• Consistency: The system’s ability to generate the proper 
haptic feedback was reliable. 

• Saliency: The noticeability of haptic feedback was correct 
as it related to its purpose and context. 

• Materiality: Haptic feedback helped me understand the 
type of material that I touched. 

• Spatial Awareness: Haptic feedback helped me better per-
ceive the virtual space. 

B.2 Data by Scene 
For the sake of completeness, we provide an overview of the recorded 
data by scene in Figure 10. To ensure the validity of treating scenes 
as repetitions in the analysis provided in subsection 5.2, we con-
ducted a repeated measures ANOVA on each item to identify if 
there were significant differences between scenes, and found none. 

• Utility: 𝐹 (2, 18) = 0.579, 𝑝 = .571. 
• Causality: 𝐹 (2, 18) = 1.501, 𝑝 = .250. 
• Consistency: 𝐹 (2, 18) = 1.421, 𝑝 = .267. 
• Saliency: 𝐹 (2, 18) = 0.586, 𝑝 = .567. 
• Materiality: 𝐹 (2, 18) = 1.656, 𝑝 = .219. 
• Spatial Awareness: 𝐹 (2, 18) = 1.968, 𝑝 = .169. 

C Study 3 Materials 
C.1 Questions 
We used the following questions to evaluate the full-VR scene. Each 
question was accompanied by a five-point Likert scale, anchored 
with the following options from left to right: “Disagree”, “Somewhat 
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Figure 10: Overview of means and confidence intervals, broken down by scene 

Disagree”, “Neither Agree nor Disagree”, “Somewhat Agree”, and 
“Agree”. 

• Realism: Haptic Feedback enhanced the realism of the scene. 
• Immersion: Haptic Feedback enhanced my immersion in 
the scene. 

• Presence: Haptic feedback enhanced my presence in the 
virtual environment – as if I was really there. 

• Feedback Clarity: It was easier to understand interactions 
with haptic feedback. 

• Engagement: I felt more engaged with the environment 
because of haptic feedback. 

• Satisfaction: The experience was more enjoyable because 
of haptic feedback. 
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