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Figure 1: Scene2Hap is an LLM-centered system that automatically generates vibrotactile feedback for full VR scenes. It
combines LLM-Based Haptic Inference, which extracts semantics and physical context of objects from multimodal scene data,
with Physics-Inspired Haptic Rendering, which models how vibrations propagate and attenuate across objects in the scene,

based on their LLM-inferred properties and physical context.

Abstract

Haptic feedback contributes to immersive virtual reality (VR) expe-
riences. However, designing such feedback at scale for all objects
within a VR scene remains time-consuming. We present Scene2Hap,
an LLM-centered system that automatically designs object-level
vibrotactile feedback for entire VR scenes based on the objects’ se-
mantic attributes and physical context. Scene2Hap employs a mul-
timodal large language model to estimate each object’s semantics
and physical context, including its material properties and vibration
behavior, from multimodal information in the VR scene. These esti-
mated attributes are then used to generate or retrieve audio signals,

“Both co-first authors contributed equally.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CHI ’26, Barcelona, Spain

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2278-3/26/04

https://doi.org/10.1145/3772318.3791297

subsequently converted into plausible vibrotactile signals. For more
realistic spatial haptic rendering, Scene2Hap estimates vibration
propagation and attenuation from vibration sources to neighboring
objects, considering the estimated material properties and spatial
relationships of virtual objects in the scene. Three user studies con-
firm that Scene2Hap successfully estimates the vibration-related
semantics and physical context of VR scenes and produces realistic
vibrotactile signals.

CCS Concepts

« Human-centered computing — Haptic devices.

Keywords

Haptics; vibrotactile; generative; large language model; virtual real-
ity; context.

ACM Reference Format:
Arata Jingu, Easa AliAbbasi, Sara Safaee, Paul Strohmeier, and Jirgen
Steimle. 2026. Scene2Hap: Generating Scene-Wide Haptics for VR from


https://orcid.org/0000-0002-0940-0436
https://orcid.org/0000-0002-2443-8416
https://orcid.org/0009-0005-8155-7664
https://orcid.org/0000-0002-7442-2607
https://orcid.org/0000-0003-3493-8745
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772318.3791297
https://steimle@cs.uni-saarland.de
https://paul.strohmeier@mpi-inf.mpg.de
https://sara.safaee@uni-saarland.de
https://easa.aliabbasi@mpi-inf.mpg.de
https://jingu@cs.uni-saarland.de

CHI *26, April 13-17, 2026, Barcelona, Spain

Scene Context with Multimodal LLMs. In Proceedings of the 2026 CHI Con-
ference on Human Factors in Computing Systems (CHI °26), April 13-17, 2026,
Barcelona, Spain. ACM, New York, NY, USA, 21 pages. https://doi.org/10.
1145/3772318.3791297

1 Introduction

Designing 3D virtual worlds can be a tedious and time-consuming
process, considering the number and diversity of objects present in
realistic virtual reality (VR) scenes. To enable VR designers to gener-
ate these 3D virtual worlds in a scalable way, recent approaches have
proposed using artificial intelligence (AI) or large language models
(LLM) to automatically design their visuals, audios, or behaviors
for a full scene comprising multiple virtual objects [20, 33, 72, 76].

However, designing the haptic properties of VR scenes remains
challenging. Researchers have proposed generative machine learn-
ing models to design haptic signals from manually formulated text
prompts or from images, for instance, with generative adversarial
networks [83, 84] or LLMs [49, 77]. While these studies provide
valuable insights regarding the automatic generation of haptic sig-
nals, they do not encompass two aspects essential to supporting
scene-wide haptics: Firstly, they do not leverage the full semantic
information of objects present in the VR scene. For example, a pot
in a kitchen scene might not vibrate if found in a cupboard, yet it
might vibrate intensely when boiling water on a stove. Secondly,
they do not consider the physical context of objects and the rela-
tionships between multiple objects in the scene. For example, if a
smartphone buzzes on a table, the actual vibration felt by the user
depends on where the user touches the table and on the table’s
material properties; vibrations attenuate more quickly on a leather
table than on a glass table. We believe that understanding object
semantics and physical scene context is crucial for advancing haptic
design in VR.

To overcome these limitations, we propose Scene2Hap, an LLM-
centered system that automatically designs object-level vibrotactile
feedback of an entire VR scene based on the objects’ semantic at-
tributes and physical contexts. In this work, we specifically focus
on generating vibrotactile signals — the most frequently used form
of haptic feedback in VR - that are triggered by active sources in
the VR environment, such as machines or vibrating objects. For a
given VR scene, Scene2Hap leverages a multimodal LLM to auto-
matically estimate each object’s semantics (e.g., whether and how
the object vibrates) and material properties (e.g., density). It queries
the LLM using the object’s multimodal information present in the
scene (e.g., images, name). We call this process LLM-Based Haptic
Inference. The inferred object properties are used to create a plau-
sible audio signal, which is then used as a vibrotactile signal after
passing through a low-pass filter with a cutoff frequency of 250 Hz.
Scene2Hap furthermore calculates a realistic vibrotactile signal, felt
at the specific point the user touches in the scene, by considering
the object’s physical context: neighboring objects and the propaga-
tion of vibration across objects depending on their LLM-estimated
material properties. Rather than assigning fixed vibration signals,
Scene2Hap modulates them in real time, based on the user’s touch
location and the material properties inferred by the LLM. We call
this process Physics-Inspired Haptic Rendering. The system delivers
independent vibration feedback to each hand through handheld
vibrotactile devices.
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Results from three studies revealed that Scene2Hap (1) could
successfully infer the semantics and physical contexts of objects in
VR scenes; (2) significantly contributed to providing immersive VR
haptic experiences by improving the sense of materiality and spatial
awareness with vibration propagation and attenuation in the scene;
and (3) successfully enhanced the overall user experience when
the user interacts in a full VR scene designed with our end-to-end
pipeline.

In summary, Scene2Hap proposes to consider scene-wide context
for haptic rendering in VR, providing LLM-based haptic inference
and physics-inspired haptic rendering in a novel architecture. These
contributions position Scene2Hap as a new direction for scalable
haptic design - one that links semantic inference with physics-
inspired modeling to generate adaptive and realistic feedback for
full VR scenes. We believe this hybrid approach can help make rich,
real-time haptics a default capability in future virtual and mixed
reality experiences. The main contributions of this work are:

o A novel system architecture, Scene2Hap, that automatically
designs object-level vibrotactile feedback for full VR scenes
by combining semantic inference and physics-inspired mod-
eling.

e LLM-based haptic inference, which estimates semantic and
material properties of virtual objects from automatically
extracted multimodal scene data.

e Physics-inspired haptic rendering, which modulates vibro-
tactile feedback in real time based on inferred material prop-
erties, spatial arrangement, and user contact position.

o Empirical validation in three user studies showing that Scene2Hap

successfully estimates the vibration-related semantics and
physical context of VR scenes and produces realistic vibro-
tactile signals.

2 Related Work

Our work builds on the intersection of three areas: haptic design
for VR scenes, machine learning-based haptic generation, and prop-
agation of haptic signals in physical context.

2.1 Haptic Design for VR Scenes

Designing haptic attributes for VR experiences is a very complex
task due to the need for extensive knowledge [42, 65, 70]. Vari-
ous GUI-based haptic design tools have been proposed to make
haptic design easier. They provide rich functions with the VR hap-
tic designers, such as creating a new haptic signal from low-level
parameters (e.g., amplitude, frequency, and spatiotemporal move-
ment) [23, 36, 55, 67, 69, 85], editing existing haptic signals [38, 66],
triggering a haptic signal in response to a specific event [66], and
building a library of haptic signals [37]. For further rapid proto-
typing of haptic signals for VR scenes, in-situ VR haptic design
methods based on designer-defined cues have also been proposed.
These allow for designing and testing haptic signals directly in
a VR scene, such as designing temporal signals for a hand-held
haptic feedback device through the designer’s vocalization [22] and
designing spatiotemporal haptic signals for the whole hand based
on the designer’s spatial input and the hand’s posture [78].

While these approaches have made haptic design more accessible,
they still rely on manual effort to create and assign haptic signals to
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individual objects. This becomes impractical in complex scenes with
many interactive elements. Scene2Hap addresses this limitation by
automating object-level haptic design using LLM-based inference,
enabling scalable haptic generation across entire VR scenes without
requiring low-level parameter tuning or manual signal authoring.

2.2 Machine Learning-Based Haptic Generation

To reduce the manual labor of haptic design, some recent works
have proposed the automatic generation of haptic rendering sig-
nals using machine learning (ML) algorithms. Typical approaches
have adopted generative adversarial networks to generate tex-
ture vibrations from image textures or material attributes [10, 13—
16, 48, 83, 84]. Heravi et al. proposed an ML architecture to gen-
erate texture signals in real-time based on the user actions (force,
speed) [29]. Farugqi et al. adopted a variational autoencoder to gen-
erate physical texture designs for 3D-printed objects [26].

Some very recent works started to leverage emerging LLMs to
generate haptic signals from more free-form inputs, such as gener-
ating temporal vibrotactile signals from text prompts [49, 56, 77],
generating spatiotemporal tactile patterns for gesture or emotion
input [64, 73], and rendering appropriate thermal feedback based
on a video context [57]. Conversely, LLMs have also been employed
to interpret vibration signals into a textual description [31, 32].

Although ML and LLM-based approaches have enabled auto-
matic haptic generation from images or text prompts, they typically
operate outside the context of full VR scenes and require man-
ual inputs for each object. As a result, they fail to capture how
object semantics are shaped by scene context or how objects in-
teract physically. Scene2Hap overcomes these issues by extracting
structured, multimodal data from the scene and using chained LLM
components to infer both semantic and physical object attributes
in context, allowing for more automatic and context-aware haptic
design.

2.3 Propagation of Haptic Signals on Surfaces

While the approaches discussed so far automate the generation of
individual haptic signals, they treat objects in isolation and ignore
how physical relationships between objects affect tactile perception.
In particular, they do not account for how vibrations propagate
across surfaces — an important factor for creating spatially coherent
haptic feedback in VR. We next review work on vibration propaga-
tion to highlight this gap.

In a real-world scene, the vibrations generated by an object
propagate through surfaces, a fact that is underestimated when
designing haptic feedback for VR scenes. To the best of our knowl-
edge, the impact of this vibration propagation on tactile perception
has not been investigated yet for interactive VR experiences. How-
ever, studies in the sensory substitution domain showed increased
spatial awareness among participants when representing locations
of remote objects using vibrotactile signals [30, 40, 86]. Hence, we
believe that considering the propagation and attenuation of vibro-
tactile signals while touching tactile surfaces in VR can influence
multiple aspects of tactile perception.

The material’s mechanical properties, such as its density, elas-
ticity, and structural composition, can influence the speed and
intensity of this propagation [2, 19, 39, 50, 62, 63, 80]. For instance,
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vibrations propagate better through rigid and dense materials (e.g.,
metals) than soft and porous materials (e.g., rubber). To analyze
vibration propagation, different structures are categorized based on
their geometry and how they deform under loads [62, 79]. The
most commonly investigated structures include plates [12, 80],
strings [3, 17], bars [9, 61], shafts [82], membranes [62], shells [47],
and beams [5, 25]. Propagation in each of these types is described
by a different analytical model. Furthermore, the analytical solution
can vary depending on the boundary conditions, e.g., whether the
structure is free, simply supported, or fixed at its ends [62, 80]. To
achieve the real-time behavior required for VR experiences, we sim-
plify these mathematical and geometrical complexities and focus
our approach on plates. We chose plates due to their vast availabil-
ity in everyday home and office appliances. The goal is to provide
a generic approach applicable to any material by providing an at-
tenuation ratio for the vibration propagation based on the physics
of vibration [19, 28].

While prior work has modeled vibration propagation for engi-
neering applications, its relevance to VR haptic design has been
largely overlooked. No existing system uses physics-inspired mod-
eling of vibration propagation based on object material properties
to modulate real-time haptic feedback. Scene2Hap introduces this
missing link: it uses LLM-inferred material parameters to simu-
late spatially dependent attenuation, allowing vibrations to propa-
gate through the virtual environment in a way that is perceptually
grounded and responsive to user interaction.

3 Scene2Hap

Scene2Hap is an LLM-centered system that automatically designs
object-level vibrotactile feedback for entire VR scenes, based on
object semantics, physical properties, and spatial context. Its archi-
tecture is the first to use an LLM to extract information for haptic
modeling from the VR scene, and uses this information for physics-
inspired modeling for real-time user interaction. It operates at scale
and without requiring manual authoring.

Scene2Hap begins by automatically extracting multimodal data
from the existing VR scene. This data is used to drive a sequence of
LLM components through prompt chaining. Their output provides
the basis for two complementary strategies for haptic generation:
(1) at startup, semantic descriptions of vibrating objects are used to
retrieve or generate appropriate audios, which are then assigned
to objects; and (2) during runtime, material properties, spatial rela-
tionships (represented as a contact graph), and pre-assigned audio
signals are used to dynamically generate context-aware vibrations
based on where the user is touching the scene. This architecture
enables the generation of plausible vibration signals for each vi-
brating object in the scene, and it allows for vibration to propagate
to neighboring objects in the scene based on spatial arrangement
and material properties. When the user touches objects using stan-
dard VR controllers, the contextually correct vibration is generated
in real-time. Overall, this transforms visual-only scenes into mul-
timodal experiences that reflect both the physical and semantic
structure of the environment.

In the following sections, we first describe LLM-Based Haptic
Inference, which involves structured multimodal data extraction
from VR scenes and prompt chaining using multimodal LLMs. This
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Figure 2: Architecture of Scene2Hap: (1) At startup, LLM-Based Haptic Inference uses a sequence of LLM components to
automatically infer each object’s semantics, material properties, and vibratory behavior from multimodal information extracted
from the VR scene. (2) During user interaction, Physics-Inspired Haptic Rendering generates contextually correct vibrotactile
feedback in real-time based on the inferred objects’ vibratory behavior, material properties, and spatial configuration in the

scene.

is followed by a brief description of how audio signals can be re-
trieved or generated. We then discuss how Physics-Inspired Haptic
Rendering employs the information inferred in the previous step
for physics-inspired generation of vibrotactile output based on user
actions, estimated material properties, and the object’s context in
the scene. A full system overview is shown in Figure 2.

3.1 LLM-Based Haptic Inference

Here we discuss the activities Scene2Hap performs at startup, once
for the VR scene. This includes methods used for extracting data
from VR scenes, and the tasks, purpose, and architecture of the
chained LLM components we use, as each component is listed
in Figure 2. The quality of the resulting data is evaluated in Section
5.1.

3.1.1 Automatic Data Extraction. We use multiple strategies to
collect information at different levels of abstraction. This includes
Scene Information (global context and aggregated scene attributes)
to ensure that all LLM responses are contextually appropriate, and
Object Information (properties of individual objects) used to gen-
erate material properties and inform the semantics of the object’s
vibratory behavior. An overview of the data sources used can be
found in Figure 3, in gray.

Scene Information. Scene2Hap collects two high-level inputs to
characterize the overall environment: the Scene Name and a set of
Scene Images. Since the Scene Name is developer-defined and often
unreliable, we supplement it with Scene Images, which are screen-
shots captured from multiple angles within the VR environment.
Details on these angles are provided in the Implementation section
below.

Object Information. Scene2Hap collects visual and geometric
information for each object to support semantic interpretation and
material estimation. Two image types are used: the Isolated Image,
showing only the target object from multiple angles, and the Context
Image, captured from the same angles but including surrounding
objects. In context images, a pink outline is automatically added
to mark the target object to help the LLM visually disambiguate it.
These visual inputs are used to identify what the object is and how
it is used within the scene.

Alongside the images, Scene2Hap provides structured data. The
Object Name is a predefined label provided by the developer of
the VR scene, often ambiguous or generic. The Size consists of
three numerical values in meters representing the dimensions of
the object’s dominant surface—such as a tabletop of a table—by
raycasting within the 3D mesh’s bounding box and calculating its
median values. The Relative Height gives the vertical offset between
the object’s bottom surface and the lowest object in the scene, which
helps distinguish ambiguous elements—for example, identifying a
flat surface labeled “Plane” as a floor rather than a wall or ceiling.

3.1.2  LLM Workflow and Components. While the data that can be
automatically extracted from a VR scene is rich, it requires further
processing to be useful for haptic feedback design. Humans can
intuitively infer which objects might emit vibrations or what mate-
rials they are likely made of, but such information is not explicitly
available in the raw data. To bridge this gap, we automate the fi-
nal step of data enrichment needed for full-scene haptic authoring
through prompting a multimodal LLM.

To inform the design of our architecture, we initially experi-
mented with a straightforward, simple prompt (cf. Appendix A.1).
This takes the above extracted information as input and directly
prompts the LLM to estimate whether the object vibrates, to indicate
its material properties (size, density, Young’s modulus, and Pois-
son’s ratio), and to describe the object’s vibration using a free-form
sentence and keywords. We identified four major sources of incor-
rect results: 1) The LLM usually did not consider object semantics
in the scene context. For instance, a miniature toy truck was judged
to vibrate as a real truck, despite its small size and positioning on
a desk. 2) Mechanical vibration originating from adjacent objects
was wrongly considered as originating from the object itself. For
instance, a mug on a desk was considered to vibrate, because "Mugs
can vibrate when placed on a vibrating surface or due to external
forces" . 3) Generated vibration descriptions were often ambiguous,
especially missing "what object" and "how" it vibrates. 4) Object
dimensions were often incorrectly assessed. Notably, zero thickness
was often assumed for surfaces because Unity developers frequently
use flat meshes with zero or close-to-zero thickness for boundary
surfaces (e.g., floor, ceiling, wall). Informed by these findings, we
developed the final prompting scheme to explicitly analyze object
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Figure 3: LLM-based haptic inference estimates the haptic properties of virtual objects by using an LLM workflow comprising
four chained LLM components: Scene Analyzer, Object Analyzer, Material Property Estimator, and Vibration Describer. The

images show one specific example.

semantics within the overall VR scene, to infer physically plausi-
ble dimensions despite potentially incorrect data in the VR scene,
and to generate more specific vibration descriptions by explicitly
considering the object category and its usage.

Figure 3 illustrates the final LLM workflow. To ensure simplicity
and maintainability of the LLM-based system!, our architecture
adopts prompt chaining using four LLM components, each respon-
sible for a specific subtask: the Scene Analyzer infers the global
context of the scene, the Object Analyzer identifies relevant object
semantics, the Material Property Estimator predicts likely material
attributes, and the Vibration Describer generates corresponding
haptic descriptors. Each component is prompted using a template
(see Appendix A) that is automatically populated with multimodal
information collected from the scene, as described in Section 3.1.
The final output is a structured JSON object containing estimated se-
mantic, material, and haptic properties, which is returned to the VR
system for use during runtime haptic rendering. Next, we provide
a detailed overview of all components:

Scene Analyzer. This component provides high-level contextual
information for all subsequent prompts. It receives multimodal
inputs: the Scene Name (a potentially ambiguous textual label) and
multiple Scene Images (captured from different viewpoints in the VR
environment). Based on these, it outputs a textual Scene Category,
which represents the estimated type of scene (e.g., kitchen, office,
workshop). This output is inserted into all downstream prompts to
help improve their relevance and accuracy.

Uhttps://www.anthropic.com/engineering/building-effective-agents

Object Analyzer. The purpose of this component is to infer detailed
semantic and contextual information about each object, which is
used in more refined downstream prompts. It receives a combina-
tion of structured and multimodal inputs. The Scene Category, as
determined by the Scene Analyzer, as well as Isolated Images and
Context Images. These are complemented by textual information
including Object Name, Size, and Relative Height, as discussed in
Section 3.1.1.

The Object Analyzer outputs several attributes: a textual Object
Category and Material Category, an Estimated Size (in the same
format as the input size) with adjustments if the raw values are
implausible for the inferred category, a Usage description captur-
ing how the object is likely used within the scene, and a boolean
Vibrate-Or-Not label indicating whether the object should produce
vibration. For selected attributes such as category, estimated size,
and vibration status, the component also provides brief justifica-
tions. This additional reasoning is necessary for interpreting and
validating the component’s outputs, especially in cases where cor-
rections are applied. For example, it is common in VR scenes to
model large boundary surfaces like walls or floors with near-zero
thickness; in such cases, the LLM replaces physically unrealistic
size values (e.g., 0.001 m) with plausible defaults consistent with
the inferred object category.

The prompts for this component are designed to support reason-
ing based not only on object identity and scene context but also
on physical plausibility, including the object’s realism - e.g., is it a
toy car or a real car? — and its potential to vibrate. In particular, the
component is allowed to infer vibration behavior even for inactive
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objects —such as power tools that are currently off — if it is likely
that they would vibrate in interactive scenarios. This enables more
complete coverage in haptic design. The output of this component
is used to prompt the final two components and also provide the
physics-inspired modeling step with information about object size.

Material Property Estimator. This component receives Material
Category as input and outputs its material properties (Density, Elas-
tic Modulus, Poisson’s Ratio) in numerical values. These values are
used to calculate vibration propagation in Section 3.2.

Vibration Describer. This component activates only for objects
marked as vibratory (Vibrate-Or-Not = true). It receives the object’s
Usage as input and produces two types of textual outputs describing
how the object should vibrate: Free-Form Sentence, used for audio
generation, and Keywords, combining an Object Category and a verb,
used for audio retrieval.

These outputs support the creation or selection of suitable vi-
bration and sound profiles to match the inferred object behavior in
context.

3.1.3 Audio Retrieval or Generation. The output of the Vibration
Describer is used for identifying or generating an appropriate audio
file for a vibrating object. We considered using dedicated text-to-
haptics generation models (e.g., [77]); however, this would have
increased the complexity of our system, as it would also require
generating temporally synchronized audio, which is challenging.
Basing the vibrotactile signals on the corresponding audio enables
audio-tactile synchronization. We do not claim any contribution
in this area, but instead build on the strong work by [45]. We
describe the detailed process of audio retrieval/generation in the
Implementation section below.

3.2 Physics-Inspired Haptic Rendering

So far, we have explained how Scene2Hap generates semantically
and contextually appropriate descriptions of vibration, uses these
descriptions to retrieve or synthesize matching audio files, and
assigns these files to objects that were identified as vibration sources.
However, this accounts only for the origin of vibration. In real
environments, vibration propagates beyond its source and interacts
with the surrounding materials.

To recreate this effect in VR, Scene2Hap uses a physics-inspired
model for vibration propagation and attenuation that dynamically
simulates how vibration travels through the scene. Vibration ampli-
tude is highest near the source and attenuates with distance. Hard
materials allow vibrations to travel farther, while soft materials
dampen them more quickly. This behavior is essential for convey-
ing information about material properties and spatial relationships
between objects.

The exact propagation of vibration depends both on static properties—

such as material type and object dimensions, inferred in the previ-
ous step—and on dynamic factors that must be computed in real-
time. These include the position of objects, the user’s point of con-
tact with the scene, and the resulting attenuation of vibration ampli-
tude along the propagation path. We now describe how Scene2Hap
handles these real-time components, including runtime tracking of
spatial configuration, and the application of the propagation model
to compute localized haptic feedback.
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Figure 4: Physics-inspired haptic rendering builds the scene
hierarchy and calculates all vibration propagation paths from
vibration sources in real-time.

3.2.1 Real-Time Contact Graph. To identify spatial and physical
relationships between objects in real-time, Scene2Hap builds and
continuously updates a contact graph during runtime, treating the
active VR scene as an undirected graph (Figure 4). In this graph,
each virtual object is represented as a node, and an edge is created
between two nodes when the corresponding objects are in physical
contact.

When the user touches an object using a tracked VR controller
(handled in Unity), Scene2Hap uses the current contact graph to
identify all possible propagation paths from the touched object to
known vibration sources. These paths are determined using a depth-
first search through the graph. These paths are then passed to the
vibration propagation model described in the following subsection,
which calculates the vibration attenuation between neighboring
materials based on material properties and spatial distance. This
allows Scene2Hap to dynamically estimate the vibration amplitude
at the point of contact, even as the user interacts with or moves
objects during runtime.

3.2.2  Vibration Propagation and Attenuation. The vibration inten-
sity at different points on a surface depends on how vibrations
propagate through materials. While exact modeling of this behav-
ior is complex, computationally intensive, and remains an active
area of research in material science and physics, interactive VR
systems require models that are efficient enough for real-time com-
putation. To support haptic feedback at interactive frame rates,
Scene2Hap uses a simplified yet physically grounded propagation
model, building on the state-of-the-art [62]. As we will show in
Study 2 below, this model offers a significant improvement over
existing systems that do not include physics-based models.
According to [19, 28], the attenuation ratio can have an exponen-
tial behavior, depending on the material and geometrical properties
of the surface. As we have estimates of these material properties
from the LLM output, we can calculate this behavior. The attenu-
ation ratio in point R with coordinates x and y can be calculated
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as:
T(R) = e F(R-Ro) (1)

where, Ry is the location of applied vibration with coordinates xp
and yo and k, the wavenumber, can be calculated using the following
equation:

he?
- @
Here, p and h are the density and the thickness of the surface,
respectively and wy is the angular frequency of the applied vibration
at point Ry. wy is calculated by applying the Fast Fourier Transform
to the audio file and finding its dominant frequency. D is the bending
stiffness and can be calculated as:

Do Eh®
T 12(1-42)

k4

®)

where, E and v are the elastic modulus and the Poisson’s ratio of the
surface, respectively. All required parameters for these calculations
are provided by the Material Property Estimator.

In Equation 1, k is a function of the surface’s material and geo-
metrical properties and R — Ry represents the Euclidean distance
between the touching point and the vibration source. Once the
attenuation ratio is calculated for point R, it is used to scale the
amplitude of the original vibration. This modulated amplitude is
then used to drive the controller’s vibrotactile feedback in real-time,
matching the user’s contact location in the VR scene. When mul-
tiple vibration sources are present in the scene, the sum of each
attenuated signal is output as the final vibrotactile signal. This cal-
culation is separately done for the position of each hand in the VR
scene so that the user receives independent vibration feedback for
each hand.

The specific model was chosen for its relative simplicity and
suitability for real-time interaction. However, the Scene2Hap archi-
tecture can also support alternative models for simulating vibration
propagation. For example, the scene could be modeled as a mass-
spring-damper system to capture more complex dynamic behaviors.

Next, we explain the details of our specific implementation as
used for our evaluation.

4 Implementation

We implemented the Scene2Hap concept in our system prototype
as follows:

VR Experience. We implemented all VR scenes in Unity3D and
ran them on a Meta Quest Virtual Reality headset. The Unity scene
calculates the contact graph and propagation ratio in response to
the user interaction at an interactive frame rate of 50 Hz, including
the update of vibration signals. This calculation uses only Unity
functions and is applicable to both static and moving objects.

Client/Server. Scene2Hap adopts a client-server model via HTTP
communication. An HTTP client implemented in Unity collects
multimodal information on VR scenes or objects and sends this
information to the server built with the Python Flask framework.
The server prompts the LLM to process this information to estimate
semantics and physical context and sends its response back to the
client. Our current implementation runs both the Unity client and
Python server on a Windows 10 PC with an NVIDIA GeForce RTX
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4090 GPU. All testing and evaluation for this paper were conducted
on this machine.

Collecting Multimodal Information. We automatically collect
multimodal information for the scene and each object within the
Unity scene, as needed for haptic inference (Section 3.1). Textual
(Scene Name, Object Name) and numerical (Size, Relative Height)
information is obtained by accessing each object’s metadata. For
Isolated Images, the system automatically moves the camera object
in the Unity scene and takes eight images of the entire target object
at a 45-degree angle from above and below, rotating the camera in
the horizontal plane by 90-degree increments. The camera renders
only the target object. For Context Images, the system takes the
target object with surrounding objects at the same angles as Isolated
Images. Here, the system casts a ray from the camera object to the
target object and culls objects that hit the ray. For Scene Images,
the system takes four images at a 45-degree angle from above,
rotating the camera in the horizontal plane by 90-degree increments.
Here, the system calculates the center of all the existing objects
in the scene. Similar to Context Images, the system culls objects
that are between the camera and this center point. This culling
process sometimes results in unnatural culling of nearby objects
or, conversely, in showing objects in the way, due to the variety of
the scene arrangement. While it is not critical in our evaluations,
this issue could be addressed in future work with a more advanced
algorithm. We used a Unity asset? to add a pink outline to the object
in context images. The outline sometimes does not completely
enclose the object, depending on the setting of the target object in
a VR scene. To deal with this case, the LLM is instructed to focus on
the object in context images that most resemble the object shown
in isolated images.

LLM Workflow. We implemented an LLM workflow inside the
Python server using the OpenAI API (GPT-4o, the model tempera-
ture was set to 0.2) and the LangChain framework>. The multimodal
information sent from the Unity client is organized into a format
that can be fed into this LLM workflow. LLM-based haptic inference
takes around 9-12 seconds per object in the current setup, based
on Study 1’s measurement result.

Audio Retrieval/Generation. We used Freesound API* for an
external web-based audio database in audio retrieval and used
AudioGen [45] (model = AudioGen-Medium-1.5B°) for a text-to-
audio model in audio generation, running on the same PC as the
Unity client and Python server do. AudioGen requires a GPU with
at least 16 GB of memory®.

In this work, Scene2Hap first tries to retrieve up to 5 best-
matching audio files by querying the Freesound database with
the Keywords generated by the Vibration Describer LLM component.
If no file matches these keywords, Scene2Hap generates 5 audio
files by feeding the Free-Form Sentence, generated by the same com-
ponent, to the AudioGen model. The system automatically removes
silent sections at the beginning and end of the audio and keeps
only samples longer than 2.5 seconds. Out of these candidates, the

Zhttps://assetstore.unity.com/packages/tools/particles-effects/quick-outline- 115488
Shttps://www.langchain.com/

*https://freesound.org/

Shttps://huggingface.co/facebook/audiogen-medium
Chttps://github.com/facebookresearch/audiocraft/blob/main/docs/ AUDIOGEN.md
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finalist is selected as follows: To favor continuous sounds, the sys-
tem discards audio files with a dynamic range of more than 5 dB,
as these would be less well-suited for continuous looping (if no
candidate is remaining, this step is iteratively repeated, increasing
the threshold by 5 dB until a solution is found). Finally, the system
selects the most harmonic audio, i.e., the audio file with the low-
est spectral flatness, because high harmonic content was typically
more pleasing than noisy files. The amplitude of this audio file is
normalized.

We believe that there are many promising approaches in devel-
opment and that this step will become trivial in the near future.

Audio Processing. For simplicity, Max/MSP was used for audio
processing. Audio and vibration playback times are synchronized
between Unity and Max/MSP by sending a UDP message when
each audio file is played in the Unity scene for the first time. Both
the audio and vibration are played in a loop. Once the material and
geometrical properties of the scene objects are identified by the
LLM, the attenuation ratio is calculated based on the coordinates
of the point the user touches in Unity. Every time this attenuation
ratio of a vibration source is updated, Unity sends a UDP message
to Max/MSP, including the attenuation ratio, the path of the audio
file, and a hand index (i.e., 0 for left hand, 1 for right hand). The
audio signal is converted to a vibrotactile signal by limiting the
frequency spectrum of the applied vibration to the human tactile
sensitivity band. Since Pacinian corpuscles are mostly responsible
for acquiring vibrations on the skin, we applied a state variable
filter (configured as a band-pass filter) with a resonance frequency
at 250 Hz, corresponding to the peak detection frequency of the
Pacinian corpuscles [21]. This filtering reduces the complexity of
the calculation with minimal impact on perceived quality (see Study
2). Therefore, the low and high-frequency components of the ap-
plied vibration signal were filtered out. In addition, the vibration
amplitude was modulated using a simplified approach given in Sec-
tion 3.2. For simplicity, in this work, we calculated this propagation
when the hand directly contacts a vibration source (attenuation
ratio is 1) or there is only one intermediate object between the
hand and a vibration source (e.g., feel the vibration of a phone from
the desk where it is placed). The final vibration is calculated by
summing all the attenuated vibration signals in Max/MSP. While
this simple approach was effective for our system, we acknowledge
that more advanced conversion methods exist (e.g., perception-level
translation [46], frequency shifting [60], or pitch matching [41]),
which remain an interesting avenue for future exploration.

Haptic Device. The system renders vibrotactile signals using two
Tachammer Drake HF vibrotactile actuators, one attached to the
handle of each Meta Quest VR controller using tape and fixed with
zip ties, such that the user can feel vibration on both hands while
interacting in the VR scene. The vibrotactile signals were generated
in Max/MSP and amplified using a Visaton 2.2LN Amplifier.

5 Evaluation

To validate Scene2Hap, we conducted three studies investigating
(1) the capability of LLM-based haptic inference, (2) the effect of
physics-inspired haptic rendering on the user’s haptic perception,
and (3) the overall experience in a full VR scene.
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5.1 Study 1: LLM-Based Haptic Inference

This study aims to evaluate how correctly the proposed LLM-based
haptic inference can infer the attributes of each object in the scene.
We evaluate this in two ways: (1) attributes that leave room for
subjective interpretation (scene, object, and vibration description)
were evaluated by human raters in an online study; (2) attributes
that could be assessed objectively (physical material properties
including density, elastic modulus, Poisson’s ratio) were assessed
by comparing to known data from the literature.

VR Scenes. For this study, we have selected six Unity scenes down-
loaded from the Unity Asset Store’, as shown in Figure 5. We
selected these scenes following three main criteria: (1) the scene
includes multiple objects that are likely to vibrate and others that
are not likely to vibrate; (2) the scene depicts a realistic setting,
including typical objects that are commonly used in this setting; (3)
the scene includes a moderate number of virtual objects (< 50) to
remain feasible within the scope of the study. The selected scenes
cover diverse VR scene settings and corresponding objects: bath-
room, kitchen, construction site, and garden. We kept the scenes
unmodified, but made three minor changes: First, we adjusted the
overall scale of each scene to be close to that of real-world envi-
ronments, as usually done by VR designers, helping our system
correctly judge the size information of each object. Second, we
added a small number of objects to evaluate the capability of our
LLM-based haptic inference in understanding object semantics with
even more challenging conditions (i.e., Pan and Truck in different
usage contexts, respectively) or to make the scene appear more nat-
ural (i.e., brown plane in Construction Site scene), as summarized
in Figure 5. Third, we removed a few common objects that were
already present in another scene and combined some unconven-
tionally divided elements (e.g., individual floor panels) into a single
object (floor) to focus on a more meaningful evaluation.

We used two scenes (Bathroom 1, Kitchen 1) as scenes during
development, for iteratively developing our LLM architecture and
refining the prompts. The remaining four scenes were held out and
remained unseen to be used for the evaluation of the system. None
of the objects in the development scenes were included in the test
scenes. We also measured the time to complete the whole haptic
inference in each scene, as shown in Figure 5.

Online Questionnaire. We created an online questionnaire that
gathered participants’ subjective assessment of how correct they
considered the results of LLM-based haptic inference on the test
scenes to be. Participants assessed both the correctness of results
pertaining to the entire VR scene and to the individual objects in the
scene. For each scene, the questionnaire provided the multimodal
information that was actually fed into the LLM (Scene Name, four
Scene Images). It instructed the participants to rate the correctness
of the estimated Scene Category on a 5-point Likert Scale (1=fully
incorrect — 5=fully correct). Similarly, for each object, the question-
naire provided multimodal information fed into the LLM (Scene
Category, eight Isolated Images, eight Context Images, Object Name).
Participants had to rate on a 5-point Likert Scale the correctness
of the estimated Object Category + Reason, Material Category, Us-
age, and Vibrate-OR-Not + Reason. If Vibrate-OR-Not was true, we

7https://assetstore.unity.com/
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Development Scenes

.

A
Bathroom

Test Scenes

Bathroom 2 | - Construction S

Scene Scene Name Number | Modifications Estimated | Correctness Processing
(defined by the | of Scene Rating Time
downloaded Objects Category (Avg (SD) on | (ins)
scene) 5-point Likert

scale)

- Bathroom 1 | bathroom_ 34 — Bathroom — —
g | [74] and_laundry_
g showcase
§‘ Kitchen 1 Demo 20 Added a pan roasting meat on the heater, a pan and a miniature refrigerator || Kitchen — —
g | [35] on the desk.
2 Removed a washing machine and a dryer that were already included in

this scene.

Bathroom 2 | Demo 36 Added an electric toothbrush and a hair dryer. Bathroom 4.90 (0.32) 415

[1] Combined separate ceiling, wall, and floor panels into one object.

Kitchen 2 Presentation 44 Added a pan and a toy truck on the desk. Kitchen 5.0 (0.00) 491

[75] Combined separate floor panels.

% | Construction | DemoScene 14 Added a truck and a brown plane under the truck as a ground. Construction | 4.70 (0.48) 132
& | Site Site

[54]

Garden objects1 23 Backyard 4.10 (1.10) 237

[59]

Figure 5: Two scenes were used for developing the prompts for our LLM-based haptic inference module, and four test scenes
for evaluation. The table includes detailed information for each scene. Empirical results show that the scene category was
correctly estimated regardless of the inappropriate scene names defined in the downloaded scenes. Processing time is the time
required to complete the LLM-based haptic inference for the entire scene.

Object Material Usage Vibrate-Or- Free-Form Keyword
Category Category (Avg (SD)) Not Vibration Vibration

(Avg (SD)) (Avg (SD)) (Avg (SD)) Description Description
(Avg (SD)) (Avg (SD))

| All Objects (30) || 451 (1.21) | 4.21 (1.26) | 451 (1.20) | 412 (1.42) || 3.63(1.47) | 3.61(1.52) |

Correct Objects (24) 4.88 (0.48) 433 (1.13) 4.83 (0.59) 4.61 (0.87) 4.30 (0.86) 4.34 (0.90)
Hard-to-Judge Objects (3) || 4.80 (0.48) 4.80 (0.48) 4.83 (0.38) 3.23 (1.48) 3.07 (1.46) 2.90 (1.45)
Incorrect Objects (3) 1.27 (0.91) 2.63 (1.61) 1.57 (1.38) 1.10 (0.40) 1.30 (0.79) 1.13 (0.35)

Table 1: Participants’ ratings of the correctness of LLM output on a 5-point Likert scale (1=fully incorrect — 5=fully correct).
The results show that the LLM-based haptic inference successfully infers the semantics of diverse virtual objects in alignment
with human raters for most objects.

further asked participants to rate the correctness of the Free-Form at least one of these criteria: (1) the object was estimated to vibrate
Sentence and of the Keywords for vibration description. As the total in the scene, (2) the object is in contact with another object that is
number of objects present in all scenes would have exceeded the estimated to vibrate, or (3) the object was added or modified by the

scope of the questionnaire, we selected a total of 30 objects that met experimenter for a deeper evaluation of our proposed architecture,


bathroom_and_laundry_showcase
bathroom_and_laundry_showcase
bathroom_and_laundry_showcase
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as summarized in Figure 5. The questionnaire did not cover Size,
Relative Height, or Estimated Size because these numerical values
were hard for the raters to judge intuitively from images alone.

Participants. We recruited 10 participants (aged 24 to 34; 6 identi-
fied as male, 4 as female). The online rating procedure took approx-
imately one hour.

Results and Discussion. Participants rated the LLM-inferred Scene
Categories as highly correct (AVG = 4.68, SD = 0.67). Considering
that most of the Scene Names defined by the downloaded Unity
scenes did not match the estimated scene category, as seen in Ta-
ble 1, this result indicates that the Scene Analyzer component can
effectively estimate the semantics of VR scenes based on their mul-
timodal information.

Table 1 shows an aggregated view of the correctness ratings of
the LLM-inferred object properties. In Supplemental Materials, we
share a detailed list, comprising the LLM-inferred properties and the
corresponding participant ratings for all individual objects. The first
row of Table 1 lists the average response for all objects. Averaged
over all objects, the ratings indicate that the LLM could correctly
infer Object Category, Material Category, Usage, and Vibrate-Or-
Not, with scores well beyond 4 on the 5-point Likert scale. The
free-form and keyword descriptions of vibrations received slightly
lower ratings of around 3.6.

A deeper analysis of individual objects revealed that objects can
be subdivided into three main clusters: for the vast majority of
objects (24/30, see Supplementary Materials), the LLM has provided
correct results that on average were rated between correct (4) and
highly correct (5) for all items (average ratings between 4.30-4.83).
This includes the demanding semantic assessment of whether the
object can vibrate or not (AVG = 4.61, SD = 0.87) and the description
of the vibration using free text (AVG = 4.30, SD = 0.86) and keywords
(AVG = 4.34, SD = 0.90). These results indicate the Object Analyzer
and Vibration Describer components can effectively estimate the
semantics of various objects based on their multimodal information,
including new types of scenes (Construction Site, Garden) that were
not used during the development process.

A second, much smaller cluster comprised 3 objects that were
clearly incorrectly estimated by the LLM (average ratings between
1.10 - 2.63), see the last row of Table 1. All these 3 objects were
variations of the same Hand Towel Rack object present in the Bath-
room 2 scene with the same geometry. Their object categories were
mistakenly estimated as "shower head" or "hair dryer" probably due
to their similar appearance when looking at the object from the side.
This misrecognition of the object category has led to consistently
low ratings by all participants for all items belonging to these 3
objects.

A final cluster comprised three objects that turned out to have
vibration properties that are hard-to-judge even for humans. Par-
ticipants were split in their assessment of whether these objects
("frying Pan" and "saucepan" objects on the heater and "stove oven"
in Kitchen 2 scene) should vibrate or not in the scene. This led to
very differing ratings with a high standard deviation for Vibrate-
Or-Not (AVG = 3.23, SD = 1.48) and for both vibration descriptions
of Free-Form Sentence (AVG = 3.07, SD = 1.46) and Keywords (AVG
=2.90, SD = 1.45). This split was somewhat expected because these
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cases were hard to judge: whether pans vibrate on the heater de-
pends on multiple factors, such as the heat intensity, what food
or liquid is to be cooked, and in what quantity. Note that for the
other properties (Object Category, Material Category, Usage), the
Object Analyzer component worked appropriately even in the case
of hard-to-Judge objects.

Interestingly, the LLM was able to understand the advanced se-
mantics of virtual objects in scenes. For instance, the truck object
with the same (but differently scaled) 3D model was successfully
recognized as a "dump track” in the Construction Site scene and as
a "miniature toy truck" in the Kitchen 2 scene, probably because our
module explicitly made the LLM consider object semantics based
on its size. Also, the pan object with the same geometry in the
Kitchen 2 scene was recognized as "it should vibrate" when placed
on the heater because "The frying pan may vibrate slightly due to
the heat from the stove when cooking". In contrast, it was recognized
as "it should not vibrate" when put on the table because "A fry-
ing pan does not typically vibrate unless it is on a heat source". The
authors consider this LLM’s response a correct assessment, and con-
sidering the split ratings provided by study participants, this may
indicate the LLM can even outperform human judgment in selected
cases. Overall, these findings show the great potential of LLMs in
automatic haptic design that considers the diverse semantics of
objects.

Correctness of LLM-estimated Material Properties. To high-
light that the data of material properties provided by GPT-4o is
reasonably good (as also indicated from the literature [89]), we
compare its output with known data from the literature. For this
analysis, we first collected a pool of materials from Ref. [19]. We
then asked GPT-4o to "Choose ten of them that are primarily used
in everyday life applications". Then, we asked it to "give the Density
(kg/m?3), Elastic Modulus (N/m?), and Poisson’s Ratio of the selected
materials".

Table 2 shows the results. To reflect real-world variability in
material properties and corresponding variability of measures, data
from Ref. [19] is supplemented with data from other sources. The
results show that the LLM’s estimations are overall within the range
of measures from the literature. In cases where this is not the case,
deviations are minor - the deviations identified in our sample are
highlighted in red. Overall, this suggests that the values provided
by GPT-40 are a reasonable foundation for basic physical modeling.

5.2 Study 2: Effect of Vibration Propagation on
Haptic Perception

To understand the effect of vibration propagation and attenuation,
we performed a second evaluation study demonstrating that the
attenuated vibration improves user experience, may help in perceiv-
ing materiality, and clearly supports users in their spatial aware-
ness of the scene. While Scene2Hap uses both LLM prompting and
physical modeling, the goal is not exact replication or naturalistic
modeling, but to enhance user experience in virtual environments.
In addition to generally improving user experience, we hypothesize
that the correct propagation of vibration improves the perception
of materiality and supports spatial understanding. To test this, we
evaluate the effect of attenuated vibration propagation on user
experience in three scenes.
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Literature GPT-40
Material Density (kg/m?) Elastic Modulus Poisson’s Ratio | Density (kg/m?) Elastic Modulus Poisson’s Ratio
(N/m?) (N/m?)
Aluminum 2570 — 2950 [52] 68 — 88.5 x 107 [52] 0.32 — 0.36 [52] 2700 69 x 10° 0.33
Steel 7820 — 7860 [8] 190 — 210 X 10° [8] 0.27 — 0.32 [8] 7850 200 x 10° 0.30
Copper 8930 — 8940 [51] 121 — 133 x 107 [51] 0.34-0.35 [51] 8960 110 x 107 0.34
Glass 2400 — 2600 [68] 50 — 130 X 10° [68] | 0.15— 0.3 [6, 27] 2500 70 X 10° 0.23
Plywood 400 — 600 [81] 7—8.6x10° [81] 0.2—0.3 [24] 600 10 X 107 0.3
Gypsum Board 545 — 700 [18] 0.47 — 2.5 x 10° [18] 0.24 [53] 850 2.5 x 10° 0.25
Brick 1900 — 2200 [19] 6 — 14 x 10° [58] 0.1—0.25 [44] 1920 12 x 107 0.20
Asphalt 1800 — 2300 [19] 0.5 — 140 x 10° [7] 0.3-04[11] 2300 1x10° 0.35
Oak 700 — 1000 [19] 2—10x10° [19] 0.33 [71] 700 12 x10° 0.30
Plexiglass 1120 — 1150 [19, 87] | 4.5 — 5.6 x 107 [19, 34] 0.35 [34] 1180 33%10° 0.35

Table 2: Comparison of LLM’s material property estimation to established measures from the literature. The values provided
by GPT-4o fall within the ranges identified from the literature. In cases where they do not, the value is indicated in red.

We assess haptic experience in three ways: (1) general usability,
using the haptic experience design framework by Kim and Schnei-
der [43] (utility, causality, consistency, saliency); (2) perceived mate-
riality; and (3) spatial awareness. Each is addressed through targeted
questionnaires following interaction with the system.

Participants. We recruited 10 participants (aged 20 to 34; 6 identi-
fied as male, 4 as female; 9 right-handed, 1 left-handed). Each study
session took approximately one hour.

Scenes. Each participant experienced three VR scenes, each with a
respective audio and vibration source: a speaker playing loud music
on a metal table, a smartphone buzzing on a wooden table, and a
washing machine running on a wooden floor (see Figure 6). This
study used simplified scene settings to focus the evaluation on the
vibration propagation and attenuation. The study used the same
audio files and material parameters pre-generated by Scene2Hap
for all participants.

To ensure controlled evaluation, we defined three touch points
on the tables (for the first two scenes) and the floor (for the third)
at distances of 0.0 (vibration source), 0.4, 0.8, and 1.2 m from each
source. Participants were free to reach and touch any of the desig-
nated points. Each scene played its respective audio continuously
with constant intensity, and the synchronized vibration was played
when the participant touched a point. Scenes were presented in
blocks, with randomized order.

Tasks and Questionnaire. Participants were instructed to touch
each point under three conditions: no propagation (only the vibra-
tion source vibrates), full propagation (surfaces vibrate with the
same amplitude as the source), and attenuated propagation (surfaces
vibrate with attenuated intensity based on material and location).
Each participant experienced all three conditions within each of
the three scenes, resulting in nine trials in total. The order of scenes
and the order of conditions within each scene were randomized.
After each condition, participants completed a questionnaire
using Semantic Differentials [4], with immediate ratings collected
after each trial (here, a high score indicates that participants agree,
and a low score indicates that they disagree; please refer to Appen-
dix B for the exact questions). They responded to six items using
a continuous bipolar scale. The first four items — utility, causality,
consistency, and saliency — were drawn from Kim and Schneider’s

framework [43] and served to assess general usability. The final two
items — materiality and spatial awareness — were added to address
our specific hypotheses. The exact questions can be found in the
appendix.

Procedure. First, participants provided informed consent and de-
mographic information. They then completed a familiarization
session, where they freely explored all three scenes and all three
haptic conditions. The trial session lasted as long as needed for
each participant to feel comfortable with the setup. In the main
experiment, participants performed free exploration in each scene
under each of the three haptic conditions. The participants put on
a noise-canceling headphone and listened to the audio played back
in each VR scene. After each condition, they completed a question-
naire. Participants were allowed to take breaks between scenes if
desired. The study took place in our lab and lasted approximately
45 minutes. Participants received compensation at the rate typical
for our institution.

Results and Discussion. Average results and confidence intervals
for this study are shown in Figure 7. We will next provide the results
for Usability, Materiality, and Spatial Understanding.

Usability

Looking at the descriptive statistics in Figure 7 highlights that the
attenuated propagation condition was rated highest for all Usability
Requirements, and no propagation was rated lowest.

The data showed substantial deviations from normality in most
cells (Shapiro-Wilk between W = .69-.95, many p < .01), homo-
geneity of variance (Levene’s test, F(11,348) = 2.16, p = .016).
Visual inspection suggested that these violations were mainly due
to responses clustering at the endpoints of the semantic differential
scales, resulting in skewed distributions.

We therefore used a repeated measures ART-ANOVA [88] to
examine the effects of Propagation (No Propagation, Full Propaga-
tion, Attenuated Propagation) and Usability Requirement Measure
(utility, causality, consistency, saliency) on participant ratings, av-
eraged across scenes. Bonferroni-corrected comparisons showed
that Attenuated Propagation was rated significantly higher than
No Propagation (p < .001) and Full Propagation (p < .001). There
was also a significant difference between No Propagation and Full
Propagation (p = .022). This indicates that, overall, the conditions
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Figure 6: Study 2 used three scenes to investigate the effect of our physics-inspired haptic rendering on VR haptic perception.

with attenuated propagation lead to the highest usability, and that
this effect was measurable for all Usability Requirements.

Materiality

Descriptive statistics show that all ratings for Materiality were com-
paratively low, however the condition with attenuated propagation
was clearly rated strongest (see Figure 7).

As the data did not meet the normality criterion (Shapiro-Wilk,
W = .8228, p = .0274 for attenuated propagation), the non-parametric
Friedman test was used to examine the effect of Propagation condi-
tion on participant responses, averaging over the scenes.

The analysis revealed a significant main effect of Propagation con-
dition, y?(2) = 8.22, p = .016 with a moderate effect size (Kendall’s
W = .41), indicating that participant responses differed signifi-
cantly across the different propagation types. Bonferroni-corrected
Wilcoxon test identified a significant difference between full propa-
gation and attenuated propagation (p = .0117).

The overall low materiality scores may be attributed to general
limitations of current VR systems (e.g., no force feedback when
touching an object). However, even though the overall ratings were
relatively low, the propagation of vibration through the scene sig-
nificantly improved participants’ experience of materiality.

Spatial Awareness

Finally, we found strong differences in how propagation conditions
affected the ratings of Spatial Awareness. Users rated the attenu-
ated propagation highly, and the no propagation condition low (see
Figure 7).

As, again, the data did not meet the normality criterion (Shapiro-Wilk,

W =.7932, p = .0120 for attenuated propagation), the non-parametric
Friedman test was used to examine the effect of propagation con-
ditions on Spatial Awareness. The analysis revealed a significant
main effect of Propagation condition (x*(2) = 12.80, p = .002), with
a large effect size (Kendall’'s W = .64).

Post-hoc Wilcoxon tests with Bonferroni correction showed
that Attenuated Propagation received significantly higher ratings
than both Full Propagation (W = 1, p = .012, r = .85) and No
Propagation (W = 1, p = .012, r = .85). The comparison between
Full Propagation and No Propagation was not significant (W = 6,
p=.082,r=.69).

This highlights that participants experienced a strong improve-
ment in spatial awareness through the attenuated vibration.

In summary, our findings show that attenuated vibration propa-
gation improves user experience. Usability Requirements (utility,

causality, consistency, saliency) showed consistent improvements,
and perceived materiality was rated significantly higher under at-
tenuated propagation. The strongest effect was observed for spatial
awareness, with attenuated propagation clearly enhancing partic-
ipants’ reported understanding of the spatial arrangement of the
VR scene. These results demonstrate that physics-inspired haptic
rendering supports both material and spatial perception in virtual
environments.

In exit interviews, participants highlighted the immersive bene-
fits of spatially dynamic vibration. For example, P3 shared that “The
condition with the propagation was realistic... it was pretty much
real-world, I really liked it, and that was my favorite.” Participants
also immediately saw useful applications in VR, for example, in
searching for the source of a vibration. However, participants noted
that the propagation of vibration might not be as relevant if there
are strong multimodal cues, e.g., P2 noted that “The scene with the
speaker was not really noticeable because the sound was so loud, and
haptics... I could not differentiate.”

5.3 Study 3: User Experience in Full VR Scene

To investigate the overall user experience in a full VR scene, we
collected feedback from participants who interacted with the VR
scene designed with our end-to-end pipeline.

Participants. We recruited 10 participants (aged 23 to 34; 5 identi-
fied as male, 5 as female). Each study session took approximately
one hour.

Scene. We used a modified version of the Kitchen 2 scene from
Study 1. To evaluate our pipeline in an interactive and realistic
VR experience, we modified the scene in terms of the following
three points: (1) We added four objects (a handheld fan®, an electric
toothbrush®, a smartphone!?, and a washing machine from the
Bathroom 1 scene in Study 1). The first three objects are portable,
allowing the user to grab or release them with the VR controllers
and move them in the scene. (2) We removed three objects (two pans
on the oven and a fried egg on a pan) due to the lack of consensus
in Study 1 on whether they should vibrate in the scene. (3) We made
the scene look more natural by adding walls and a window!!, and
adjusting the floor size. We ran LLM-based haptic inference once

8https://skfb.ly/oStXz

“https://skfb.ly/pwqpM
Ohttps://assetstore.unity.com/packages/3d/props/electronics/free-smartphone-
90324
Uhttps://assetstore.unity.com/packages/3d/environments/apartment-kit-124055
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Figure 7: Results of Study 2. Purple, blue, and cyan colors show the average ratings of the participants for no, full, and attenuated
propagation types, respectively. In this experiment, four usability requirements (utility, causality, consistency, saliency) as well
as perceived materiality and spatial awareness were probed. Significant differences from the post hoc analysis are indicated by

*if p < .05 and by ** if p < .001.
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Figure 8: Study 3 used a modified version of Kitchen 2 scene (left). The vibration sources were set to the seven objects (right).

for this scene in advance and used the common material properties
and audio signals for all participants to ensure comparability. The
vibration sources were set to seven objects: handheld fan, electric
toothbrush, smartphone, washing machine, refrigerator, cooker
hood, and microwave.

Tasks and Questionnaires. To ensure all participants explored
the relevant aspects of the scene, we asked them to follow a shared
procedure. (1) They observed the scene visually for 30 seconds.
(2) They were asked to identify which devices were turned on
- they were encouraged to walk, touch, and continue exploring
until all seven active devices were found. (3) They were asked to
explore how lifting, moving, and combining portable vibrating
objects affected the resulting vibration: they examined table and
counter surfaces with and without mobile objects, tested vibration
transfer by placing multiple devices on surfaces, and compared
sensations of devices held in hand and placed on objects.

After completing the tasks, participants filled out two question-
naires using 5-point Likert scales. The first (from Study 2) assessed

usability (utility, causality, consistency, saliency), materiality, and
spatial awareness. The second addressed realism, immersion, pres-
ence, clarity of feedback, engagement, and satisfaction (Appen-
dix C). Likert items were chosen instead of semantic differential
scales, as we do not intend to make statistical comparisons between
conditions. An exit interview was conducted with each participant
for the qualitative analysis. These interviews were structured by the
questionnaires: the participant and experimenter together iterated
through all the items and together reflected on why the participant
chose the respective response to it.

Procedure. Participants signed a consent form, gave demographic
information, and were briefed that some devices in the kitchen
would produce audio and vibration. They explored freely while fol-
lowing task instructions. Afterward, they completed both question-
naires and took part in a recorded qualitative interview discussing
each questionnaire item.
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Data and Analysis. A chi-square test of independence indicated
a significant association between questionnaire items (13) and re-
sponse types (5), y?(48) = 83.20, p = 0.0012, suggesting systematic
response patterns. Qualitative data were transcribed and cleaned of
non-verbal utterances. Statements by participants were extracted.
The rest of the analysis was conducted using affinity clustering. Ini-
tially, one author assigned clusters per question, which were used
to better understand the Likert items, and then assigned clusters
across questions. In a collaborative coding session, these clusters
were reviewed together by three authors and edge cases were dis-
cussed. One author completed the affinity clustering.

Qualitative Results Discussion. Figure 9 shows the participants’
questionnaire responses. Overall, participants agreed on the posi-
tive contribution of haptic feedback. The ratings show that Scene2Hap
positively contributes to users’ perception of spatial awareness, re-
alism, feedback clarity, causality, and satisfaction; those dimensions
received only positive ratings. Engagement, saliency, presence, and
utility were rated positively by a clear majority of participants. In
contrast, materiality received mixed responses. The interviews pro-
vided insights on the ratings: Some participants felt that vibration
added to their sense of materiality - for example, understanding
the material of a table when vibrating objects were placed on it. In
contrast, others found that the added vibration highlighted the lack
of materiality in other aspects. For instance, the absence of normal
forces and the inability to distinguish between surfaces such as
plastic or wood became more apparent once haptics was added for
vibration sources.

5.3.1 Resulting Themes. One cluster that emerged was around
comparisons to the real world. Many participants emphasized
that vibrations felt authentic in comparison to similar real-world
sensations, such as a phone vibrating. Presence was stronger when
vibrations carried through solid objects, as in real life. P6 stated:
“When I hear a vibration, like my phone alarm ringing, I feel it when I
reach out, and that is how life is supposed to work. The same with the
toothbrush and the fridge; in my head, things should work like this,
and that is what realism is.” Still, some participants (P1, P9, and P6,
who otherwise appreciated the realism) highlighted that vibrations
sometimes felt too similar and less varied than expected from real
life. A strong anecdote came from P1, who experienced an incident
where they almost fell because they tried to support their weight
on a virtual chair. Reflecting on this experience, they suggested
that vibration may have subconsciously made them believe the
virtual world was more real: ‘T dropped the toothbrush, I tried to use
the chair to get up, but there was no chair. [...] being in the virtual
environment felt real.”

The propagation of vibration was a major discussion point.
Generally, participants—without being explicitly prompted—noticed
and praised the propagation mechanism. It was described as making
the experience feel more realistic and increasing participants’ sense
of presence in the scene. Participants stated that as they moved
their hands and approached objects, they could identify the vibra-
tion source. For example, P8 said: “With three items on the table, as
I approached them the vibration got stronger and clearer, helping me
identify the source.” Propagation also improved spatial awareness by
helping participants understand their distance from the source. As
P7 described: “The table had vibration. As I moved towards the object,
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vibration got stronger, and as I went away, it got weaker. That gave
me spatial awareness.” Participants mentioned that propagation
attracted their attention to vibrating devices, unlike non-vibrating
ones, such as the pan, which they paid less attention to.

Many participants used comparisons between objects to dis-
cuss haptic feedback. For example, participants 1, 4, 5, and 9 high-
lighted that vibration helped them distinguish between objects.
However, participants 2, 3, and 6 felt that this aspect might be
improved, stating that larger and smaller objects felt too similar.
Interestingly, P9 reported that in one situation they could not differ-
entiate between the fan and the washing machine-here the fan was
placed on the washing machine, and the vibration the user felt was
the vibration of the washing machine propagating through the fan.
Participants also highlighted that while they could distinguish the
behavior of devices tactually, the vibration “didn’t reveal whether it
was metal, wood, or rubber” (P4).

Another cluster that emerged was around discussions of haptics
in the context of other senses. Many participants highlighted the
importance of multimodality while praising the haptics. For exam-
ple, P5 stated: “Vision, hearing, and touch all need to work together.
The most important haptic feedback was touching the table and sens-
ing feedback from devices. Vision alone could not show differences,
but haptics let me understand which devices were on and distinguish
between objects like the toothbrush and cell phone.”

A final topic that came up was the role of personalization of
vibration. For example, P1 would have preferred that they could
turn off the phone’s vibration. Participants 8, 9, and 10 all expressed
the wish for personalization options.

In summary, we see this as a strong endorsement for our Scene2Hap
approach. Participants praised the immersion that the haptics pro-
vided. Not only was the vibration generally highlighted as realistic
and useful, but participants also successfully manipulated vibrating
objects and could feel how re-positioning and combining objects
affected how vibration propagated through the scene in real time.
Critical points were raised regarding some vibration signals that
were felt too similar- this suggests that the fixed cutoff frequency
chosen may not have been ideal. Similarly, the richness in vibration
from active objects also made participants more critically aware of
the missing haptic feedback from passive objects. The wish for per-
sonalization also highlights that additional editing or regeneration
abilities would be a valuable addition in future iterations.

6 Discussion

The three evaluations jointly demonstrate the effectiveness and
robustness of Scene2Hap. Study 1 confirmed that the system can
accurately infer semantic and physical attributes of virtual objects
based on automatically extracted multimodal scene data. This in-
cludes nuanced interpretations of object use and context that go
beyond what conventional rule-based systems or object metadata
can provide. Study 2 showed that these inferred properties, when
used to drive haptic rendering, lead to measurable improvements in
user experience—especially for spatial awareness, but also for per-
ceived materiality and usability. Study 3 showed that the end-to-end
pipeline successfully enhanced the overall user experience when
the user is interacting in a full VR scene. Together, these results
validate Scene2Hap’s full pipeline: from automatic data extraction
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Figure 9: Results of Study 3. In this experiment, participants filled out two questionnaires. Questionnaire A contained items for
four usability requirements (utility, causality, consistency, saliency) as well as perceived materiality and spatial awareness (left),
and Questionnaire B included perceived realism, immersion, presence, feedback clarity, engagement, and satisfaction (right).

to LLM-based inference to physically grounded, perceptually mean-
ingful haptic output.

A unique strength of Scene2Hap lies in its system architecture,
which combines LLM-based inference with physical modeling. At
its core, the system asks two distinct questions about each object
in the scene: “How does it vibrate?” and “What are its material
properties?”. The answer to the first question is used to retrieve
or generate an audio file representing the object’s vibration. The
answer to the second provides material properties such as density
and stiffness, which are used in a physical model to determine how
vibration propagates across connected surfaces. This model is then
used to modulate and attenuate the live audio stream in real time, so
that users feel the vibration that is appropriate to the location and
material they are touching. This unique combination of semantic
reasoning and real-time physical modeling enables Scene2Hap to
generate haptic feedback that is adaptive, coherent, and requires
no manual tuning.

This architecture provides practical benefits for VR designers.
Scene2Hap enables rapid deployment of haptic experiences without
requiring manual parameter tuning or specialized domain knowl-
edge. It allows VR creators to build rich, multimodal environments
at scale—even in scenes with many complex objects—making haptic
feedback more accessible as a design material.

Scene2Hap has several limitations. First, object semantics are
currently limited to scene-level use and binary vibration behavior;
future work could support richer object states, part-level reason-
ing, or event-based triggering. Second, while our physical model
supports real-time propagation, it assumes simplified geometries
and the vibration propagation to only neighboring objects. It may
benefit from higher-fidelity models if performance allows. Third,
while audio quality is dependent on retrieval/generation methods,
which are outside our scope, future work could provide quality con-
trol through advanced LLM-based selection strategies or integrate
alternative automatic haptic generation methods (e.g., [77]) into
the Scene2Hap pipeline. Fourth, the system’s performance is depen-
dent on the specific LLM used (we used GPT-40). While we mitigate
potential non-deterministic outputs with a low temperature, we
anticipate that future models will enhance accuracy and processing
speed. This advancement may also resolve limitations regarding

input data, potentially achieving robust performance with fewer
text or image inputs than currently used. Lastly, our approach was
specifically designed for experiencing haptic vibrations that are
triggered by mechanisms, machines, or other active sources in a VR
scene. This approach can also be applied for a wider range of ex-
pressive VR scenes, such as rendering the floor-shaking resonance
of a virtual music concert or rendering symbolic haptic feedback
for magical effects. In future work, we hope to extend the approach
to haptic experiences caused by user interaction, ranging from ma-
terial properties, like friction or texture, to abstract feedback such
as subtle Ul confirmation pulses.

7 Conclusion

We present Scene2Hap, an LLM-centered system that automatically
designs object-level vibrotactile feedback for entire VR scenes based
on the objects’ semantic attributes and physical context. Scene2Hap
comprises two main technical contributions: LLM-based haptic
inference and physics-inspired haptic rendering. Scene2Hap per-
forms LLM-based haptic inference that employs a multimodal large
language model to estimate the semantics and physical context
of each object, including its material properties and vibration be-
havior, from the multimodal information present in the VR scene.
This semantic and physical context is then used to create plausible
vibrotactile signals by generating or retrieving audio signals and
converting them to vibrotactile signals. For the more realistic spatial
rendering of haptics in VR, Scene2Hap performs physics-inspired
haptic rendering in real-time that calculates the propagation and at-
tenuation of vibration signals from their source across objects in the
scene, considering the estimated material properties and physical
contexts, such as the distance and contact between virtual objects.
Results from three studies confirmed that (1) LLM-based haptic
inference could successfully understand the semantics and physical
contexts of various objects in VR scenes; (2) Physics-inspired haptic
rendering significantly contributed to providing immersive VR hap-
tic experiences by improving the sense of materiality and spatial
awareness with plausible vibrotactile signals and vibration atten-
uation; (3) End-to-end pipeline successfully enhanced the overall
user experience when interacting in a full VR scene.
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A Used Prompt Templates

This appendix section introduces the prompt templates used for
our LLM components in Study 1. The bracketed sections in these
templates are automatically replaced with the information for each
scene or object.

A.1 Initial Simple Prompt

Your role is (1) to recognize the contexts
of a Unity gameobject from its name,
size, position, and images, (2) to
estimate the material properties, (3)
to describe how an object should
vibrate in a Unity scene.

The name of the Unity scene is {scene_name}.

The sent images comprise three sets. The
first {len_scene} images sent were
taken from different angles in the
scene. The next {len_isolated} images
are isolated images that show an object
of interest in the center part from
different angles. The other
{len_context} images are scene images
that show the same object in the scene
from different angles.

The user prompt is {user_prompt}.

The object name in a Unity scene is
{object_name}.

The size of the object in the scene is
{size} in a meter unit.

The object is placed at the Y position of
{position_y} in the scene in a meter
unit.

Estimate its actual size in a string format
like '1.0,1.0,1.0".

Estimate whether the object should vibrate
in the scene in some cases (bool).

Estimate its density in kg/m”*3, Young's
modulus in GPa, Poisson's ratio, and
damping ratio of the material category
in float values.

If the object should vibrate, answer the
following. If the object should not
vibrate, return an empty string.

Describe how the object should vibrate with
less than 15 words.
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In Addition, provide keywords that describe
the vibration by connecting two sets of
words with blanks like '<Keyword A>
<Keyword B>".

Provide the estimated size and its reason,
whether the object should vibrate and
its reason, density, Young's modulus,
Poisson's ratio, damping ratio,
free-form vibration description, and
keywords in a JSON format without any
affixes. All structured outputs should
be provided.

A.2 Final Prompt for Scene Analyzer

Your role is to recognize the category of a
Unity scene from its name and images.

The name of the Unity scene is {scene_name}.

The images sent were taken from different
angles in the scene.

Estimate its scene category in 1-2 words
from its name and images.

This category should be very specific
without ambiguity. {scene_name} does
not necessarily mean the correct scene
category.

The scene category should be the name of
its environment or scene, not a summary
of the objects in images.

Take into account only the images showing
objects clearly, and ignore the other
images.

Provide the scene category without any
affixes. If it is extremely difficult
to estimate the scene category, answer
'undefined'.

A.3 Final Prompt for Object Analyzer

Your role is to recognize the contexts of a
Unity gameobject from its name, size,
position, and images.

The user prompt is {user_prompt}. If the
user prompt is not empty, conduct the
below estimation with the highest
importance on the user prompt.

The scene category of the Unity scene is
{scene_category}.

The object name in a Unity scene is
{object_name?}.
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The

The

The

size of the object in the scene is
{size} in a meter unit. It is not
decided which value of this size vector
is the width, height, or depth. This
size is a dimension of the dominant
surface of the object. For example, if
the object is a table with legs, the
value is the size of the tabletop.
object is placed at the Y position of
{position_y} in the scene in a meter
unit.

sent images comprise two sets. The
first {len_isolated} images are
isolated images that show an object of
interest in the center part from
different angles. The other {len_scene}
images are scene images that show the
same object in the scene from different
angles.

Estimate its object category in 1-3 words

from its name, size, position, and
images. However, if {object_name}
sounds like a boundary surface (e.g.,
floor, ceiling, wall) or a room, give
the most importance for estimation to
its object name and ignore its size.

This object category should be very

specific without ambiguity (e.g.,
'refrigerator' is better than
"appliance' in terms of clarity).
{object_name} is not necessarily the
correct object category.

If there are multiple options for the

object category, choose the one that is
most likely to exist in
{scene_category}. Try not to choose a
category that is not likely to exist in
{scene_category}.

When you check the scene images, estimate

the object category of only the object
surrounded in a pink outline, and not
consider the whole environment. If this
pink outline does not completely
surround an object or is not visualized
at all in the scene images, consider
the target object to be the object in
the center of the scene images and most
resembles the object in the isolated
images.

Take into account only the images showing

some objects clearly, and ignore the
other images.
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Take into account the object's authenticity
based on whether it is being used in a
physically plausible way in the scene
images and whether its size roughly
matches the typical size of its object
category that humans use in everyday
environments. This size check should
not be too strict. If this object is
not authentic, include a word to
describe the authenticity (e.g.,
'miniature' if the object is too small)
in the estimated object category.

Position information can be used to
estimate the object category,
especially it has an ambiguous name and
shpae.

Do not estimate the object category from
the light and reflective conditions
because the images are taken from
various lighting conditions.

If the object is a boundary surface, it is
likely that one axis of {size} is too
small in Unity. In that case, estimate
the object size by replacing only that
axis value with a typical value for the
object category in meters and provide a
reason in one sentence. Return the same
value as {size} for the estimated size
in the other cases. Note that you
should return the value in a string
format like '1.0,1.0,1.0'. For example,
if the thickness of the room floor is
too small, replace it with a typical
value for the room floor.

Estimate its material category in 1 word
from its isolated images and object
category. If the object comprises
multiple materials, choose the most
dominant material. This material
category should be as specific as
possible, not a general term. (e.g.,
"iron' or 'steel' should be used rather
than 'metal' in terms of concreteness).
If the object is not authentic,
estimate the material category based on
the object's authenticity. If the
object seems a boundary surface and is
textureless, estimate the material that
is likely to be present in the
{scene_category} based on its surface
color.

Estimate how the object should be used in
the scene in one sentence from the
scene images. If humans generally use
the object while holding it in the
scene, consider that case.
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0

1 | Estimate whether the object should vibrate
in the scene in some cases (bool) based
on its scene images and estimated
usage. For example, the target object
could vibrate due to thermal energy
propagated from surrounding objects or
its internal mechanism. If humans
generally use the object while holding
it in the scene, consider that case. If
the target object or an adjacent object
is an electric machine, consider the
vibration that can occur when they are
powered on. Do not consider the
propagation of mechanical vibration
originating from adjacent objects.

» | Provide the object category and its reason,
material category, usage, estimated
size and its reason, whether the object
should vibrate and its reason in a JSON
format without any affixes. All
structured outputs should be provided.

A.4 Final Prompt for Material Property
Estimator

i | Your role is to estimate the material
properties of a material category.

> |Estimate density in kg/m”*3, Young's modulus
in GPa, Poisson's ratio, and damping
ratio of {material_category} in float
values. Strictly check that the values
are provided in the correct unit.

5 | Provide these numerical values in a JSON
format without any affixes or units.
All structured outputs should be
provided. If you cannot estimate the
material properties for some reason,
assign @ for all values.

A.5 Final Prompt for Vibration Describer

1 | Your role is to describe how an object
should vibrate in a Unity scene.

2 |{object_category} is used in the following
way: {usage}.

3 | Describe how the object should vibrate in a
simple and straightforward sentence
with less than 15 words. This sentence
should start from {object_category} and
mention its vibration characteristics
in simple words.
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In Addition, provide keywords that describe
the vibration by connecting two sets of
words with blanks like '<Keyword A>
<Keyword B>'. The first set has to be
{object_category}. The second keyword
should be one verb in its base form
related to the vibration that best
describes how the object vibrates in
the scene. Do not use the word
'vibrate' in the keywords.

Provide the free-form sentence and the
combined keywords in a JSON format
without any affixes. All structured
outputs should be provided.

B Study 2 Materials
B.1 Questions

We used the following questions to evaluate vibration propagation.
Each question was accompanied by a continuous line, anchored
with “Strongly Disagree” on the left and “Strongly Agree” on the
right. Participants marked a point along the line, which was then
measured and recorded as a percentage.

o Utility: Haptic feedback was able to benefit my user experi-
ence in a way that other sensory modalities cannot.

o Causality: I could identify and describe the source of haptic
feedback.

e Consistency: The system’s ability to generate the proper
haptic feedback was reliable.

e Saliency: The noticeability of haptic feedback was correct
as it related to its purpose and context.

e Materiality: Haptic feedback helped me understand the
type of material that I touched.

o Spatial Awareness: Haptic feedback helped me better per-
ceive the virtual space.

B.2 Data by Scene

For the sake of completeness, we provide an overview of the recorded
data by scene in Figure 10. To ensure the validity of treating scenes

as repetitions in the analysis provided in subsection 5.2, we con-
ducted a repeated measures ANOVA on each item to identify if
there were significant differences between scenes, and found none.

Utility: F(2,18) = 0.579, p = .571.

Causality: F(2, 18) = 1.501, p = .250.
Consistency: F(2,18) = 1.421, p = .267.
Saliency: F(2,18) = 0.586, p = .567.
Materiality: F(2, 18) = 1.656, p = .219.
Spatial Awareness: F(2,18) = 1.968, p = .169.

C Study 3 Materials
C.1 Questions

We used the following questions to evaluate the full-VR scene. Each
question was accompanied by a five-point Likert scale, anchored
with the following options from left to right: “Disagree”, “Somewhat
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Figure 10: Overview of means and confidence intervals, broken down by scene
» GNT s . » « » . . . .
Disagree”, “Neither Agree nor Disagree”, “Somewhat Agree”, and e Feedback Clarity: It was easier to understand interactions
« . .
Agree”. with haptic feedback.

e Realism: Haptic Feedback enhanced the realism of the scene.

e Immersion: Haptic Feedback enhanced my immersion in
the scene.

e Presence: Haptic feedback enhanced my presence in the
virtual environment — as if I was really there.

¢ Engagement: I felt more engaged with the environment
because of haptic feedback.

e Satisfaction: The experience was more enjoyable because
of haptic feedback.
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