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Abstract

Human-in-the-loop optimization identifies optimal interface de-
signs by iteratively observing user performance. However, it often
requires numerous iterations due to the lack of prior information.
While recent approaches have accelerated this process by leverag-
ing previous optimization data, collecting user data remains costly
and often impractical. We present a conceptual framework, Human-
in-the-Loop Optimization with Model-Informed Priors (HOMI), which
augments human-in-the-loop optimization with a training phase
where the optimizer learns adaptation strategies from diverse, syn-
thetic user data generated with predictive models before deploy-
ment. To realize HOMI, we introduce Neural Acquisition Function®
(NAF*), a Bayesian optimization method featuring a neural acqui-
sition function trained with reinforcement learning. NAF* learns
optimization strategies from large-scale synthetic data, improving
efficiency in real-time optimization with users. We evaluate HOMI
and NAF' with mid-air keyboard optimization, a representative VR
input task. Our work presents a new approach for more efficient
interface adaptation by bridging in situ and in silico optimization
processes.
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1 Introduction

Efficient and effective interface optimization for different users and
contexts is a long-standing goal in human-computer interaction
(HCI) [34, 62, 70, 88]. Model-based optimization approaches ad-
dress this goal by employing computational optimizers to search
for interface designs that maximize predicted user performance,
based on established behavioral models. However, most such mod-
els capture only population-level behavior, limiting their ability to
support personalized interface optimization. Although recent work
has attempted to optimize interfaces for individuals or contexts by
inferring user-specific or context-specific model parameters during
use, this inference is often challenging or time-consuming (7, 60],
making it difficult to scale or deploy in real-time settings. In recent
years, human-in-the-loop optimization (HILO) emerged as a more
practical alternative [15, 28, 29, 35]. Unlike model-based approaches
that rely on user models, HILO operates directly on actual users:
the optimizer proposes a design candidate, users interact with it,
their performance or feedback is evaluated, and the optimizer itera-
tively suggests new designs to improve the user experience. A key
advantage of this paradigm is that optimization is driven by users’
real-time evaluations, enabling personalization without requiring a
user-model inference step. Various computational techniques, such
as Bayesian optimization [13, 16, 32, 42], evolutionary and genetic
algorithms [6, 54], and heuristic-based techniques [35] have been
explored to realize HILO. Among these, Bayesian optimization (BO)
stands out due to its better performance and minimal assumptions
about the task [20]. HILO with BO has been applied in domains
such as novel interaction techniques [44], design tools [13, 28], and
wearable interfaces [29, 41].
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Figure 1: The general steps of our HOMI framework. Step 1: Model selection — Designers or developers select a model,
parameterized by 0, that is relevant to the target task, and optionally fit the model’s parameters (e.g., Fitts’ law, with parameters
a and b) using minimal user data to better reflect the target context. Step 2: Synthetic user generation — A diverse set of synthetic

users is created by sampling different parameter settings 01, 0,

03, ... from the fitted model’s parameter distribution. Step

3: Meta-BO training — The meta-optimizer interacts extensively with these synthetic users to learn efficient strategies for
optimizing across user variability. Step 4: Deployment — The trained meta-BO is deployed with real users and quickly adapts to
individual performance or preferences using the learned prior experience.

While effective for personalizing designs, HILO has a key limita-
tion: the optimization process is often lengthy, typically requiring
many rounds of user evaluations to identify a promising interface
design [67, 83]. The underlying challenge is that the optimizer usu-
ally begins with little or no task-specific information, requiring it
to explore the design space with random design candidates before
gradually converging toward an optimal solution. Such prolonged
adaptation not only exposes users to suboptimal designs, but also
forces them to repeatedly adjust their behavior, or even re-learn
interaction strategies as the interface continues to change. This is
especially problematic for interactions that demand instant and
stable performance, such as most input techniques. Ideally, an opti-
mizer should therefore identify a promising, or even optimal, design
within as few trials as possible, and then fix the interface to provide
a stable experience for the remaining use. Consequently, efficiently
finding high-performing designs early has become a central goal in
HILO and broad adaptive interfaces [32, 41].

Recent work has attempted to enhance the adaptation efficiency
by incorporating prior data from past users to initialize or guide the
optimization process, a concept known as transfer learning or meta-
learning. For example, previous works have explored constructing
a single surrogate model based on all the previous users’ evalua-
tion results [45], storing a series of separate prior user models and
aggregated them via a weighted-sum approach during deployment
[41], or maintaining an adaptive surrogate model using Bayesian
neural networks to accumulate growing data [46]. These works
demonstrated that augmenting HILO with prior experience is a
viable and general path toward solving the cold-start issue. How-
ever, a key bottleneck remains: the reliance on real human data.

Prior transfer- or meta-learning-based methods require data from
at least ten users to be effective [41, 45], which can be prohibitively
expensive or impractical. Moreover, any changes to the interaction
task or interface require fresh rounds of data collection, severely
limiting scalability. This motivates a fundamental question: Is it
possible to train computational optimizers for higher online efficiency,
yet, without relying on real human data?

In this work, we propose a new computational framework called
Human-in-the-Loop Optimization with Model-Informed Priors (HOMI),
illustrated in Figure 1. Here, “model-informed priors” refer to the
learned optimization strategies acquired by training with predic-
tive models. Rather than relying on real user data for training the
optimizer, HOMI leverages data from synthetic users simulated
from these models. This offline training phase allows Bayesian op-
timization to develop a broad understanding of the design space
and to learn effective adaptation strategies across diverse user con-
texts before online optimization begins. A key advantage of using
model-informed priors is that the optimizer can be trained with
a wide variety of synthetic users, enabling generalization across
different usage scenarios. In contrast, training with real users limits
the optimizer’s knowledge to a small number of specific individu-
als, reducing its adaptability. At deployment, the trained optimizer
switches to a human-in-the-loop mode, integrating prior knowl-
edge with live user feedback to efficiently optimize the interface
design in real time.

To realize the HOMI framework, we introduce a novel Bayesian
optimization method enhanced by meta-learning; this type of ap-
proaches is commonly referred to as meta-BO in the machine learn-
ing field [36, 82]. Our method, called Neural Acquisition Function*



Efficient Human-in-the-Loop Optimization via Priors Learned from User Models

(NAF*), builds on the work of Volpp et al. [81], who proposed re-
placing acquisition functions in Bayesian optimization with neural
networks trained via reinforcement learning [25, 77]. Leveraging
the scalability of neural networks, NAF* can be trained on large-
scale synthetic user datasets, and incorporates two novel features
tailored specifically for human-in-the-loop scenarios. First, NAF*
provides designers with enhanced flexibility in setting design ob-
jectives by dynamically aggregating multiple design objectives into
a single weighted-sum objective for which individual weights can
be flexibly tuned in practical applications. Secondly, NAF* ensures
robust performance across the diverse behaviors of end-users, even
if their behavior varies significantly from that of synthetic users.
Therefore, we propose a novelty detector that estimates how likely
a user at run-time is different from the synthetic users, which is
used to aggregate outputs from the neural and a standard acquisi-
tion function. We validate the effectiveness of our method through
a series of synthetic tests, showing that NAF* converges more
efficiently than established meta-BO approaches, adapts its opti-
mization strategy to varying objective weightings, and remains
robust when encountering novel synthetic users.

We further demonstrate the effectiveness of our HOMI by apply-
ing NAF* to real-time adaptation of a mid-air keyboard for direct
touch input, which is an essential VR text entry technique, in a
study with real users. The training involved synthetic users con-
structed via established models in HCI, including Fitts’ law [49]
and typing error model [11]. The results showed HOMI enabled by
NAF* outperforms the established baselines, including both manual
keyboard setting and standard BO in that it significantly reduced
the number of iterations required to personalize the keyboard.

To summarize, we make the following contributions:

e Concept and Framework: We propose HOMI, a novel
framework that trains HILO using synthetic user data gen-
erated from models, enabling scalable and efficient interface
adaptation. Critically, HOMI repositions the role of user mod-
els from being optimization targets to training resources.

e Method: We introduce NAF*, a Bayesian optimization method
with a neural acquisition function trained on synthetic data,
supporting dynamic objective weighting and robust general-
ization to unseen user behaviors.

e Demonstration: We evaluate HOMI and NAF" on mid-
air keyboard adaptation, showing that our approach signif-
icantly outperforms standard BO and manual baselines in
online adaptation scenarios.

2 Background & Related work

We review the key topics that are relevant to this work, especially
focusing on model-based optimization in HCI, HILO, and the tech-
niques that augment Bayesian optimization with prior data for
efficient interface adaptation.

2.1 Model-based Optimization in HCI

Optimization is an essential process in HCI and design, even if they
are not explicitly articulated as such. In traditional user-centered
design workflows, optimization is performed manually: design-
ers generate a set of candidate designs, which are then evaluated
through user testing and iteration [1]. The field of computational
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interaction [65] aimed to integrate computational optimization
methods in the design process to automatically identify optimal
design candidates. This idea is not new: engineering fields have
long used optimization workflows in which a solver proposes can-
didate designs, and these are evaluated through domain-specific
models (e.g., physical, mechanical, chemical) to identify optimal
solutions [53]. This approach has proven successful in fields such as
mechanical engineering [69], chemical engineering [8], and archi-
tectural design [55]. HCI researchers have adopted similar methods:
deploying computational solvers over user models to identify op-
timal interaction designs. Examples include menu optimization
[4, 79], keyboard layout design [18, 27], and user interface layout
adaptation in AR/VR environments [17, 48], and more.

With the rapid growth of user modeling approaches, model-
based optimization has shown success in generating promising de-
sign candidates. A key opportunity can extend to enabling adaptive
interfaces: given a new user and context, in principle, one could
first infer that user’s model parameters (in other words, inverse
modeling or model inference), then run a computational solver over
that personalized model to derive an optimized interface. However,
this ideal pipeline is rarely feasible in practice. Inverse modeling
is computationally expensive and often ill-posed [26, 58]: multi-
ple parameter combinations can reproduce the same behavioral
observations. As a result, most model-based optimization in HCI
has targeted an abstract average user, or a fixed user group [71, 79],
and the deployed systems typically do not update or adapt their
underlying model based on live observations.

This paper circumvents this inverse-modeling bottleneck. In-
stead of inferring exact model parameters for each user, we pursue
human-in-the-loop adaptation to directly identify the optimal in-
terfaces for each individual with minimal user intervention. The
HOMI framework builds on the foundation of model-based opti-
mization, but reframes user models not as fixed targets to optimize
against, but as generators of synthetic user data for training an
optimizer.

2.2 Human-in-the-Loop Bayesian Optimization
Human-in-the-loop optimization (HILO) is an emerging optimiza-
tion paradigm in HCI that does not rely on predefined user models.
Instead, HILO learns and optimizes directly from online observa-
tions, which may include user performance, preferences, or other
forms of interaction feedback. The objective function f is usually a
user-centered metric (e.g., completion time [46], preferences [31],
etc.) that we want to optimize for [29, 41, 44, 86]. Each unique de-
sign candidate x within the designated design space X results in a
user-related objective function value, f(x). The goal of HILO is to
identify the global optimal design x* that maximizes (or minimizes)
the objective value f(x*). Such optimization problems are challeng-
ing since the only way to access the user-relevant objective function
is through costly user evaluations. Bayesian optimization (BO) is a
popular computational method for human-in-the-loop optimization
due to its higher sample-efficiency than other approaches (requiring
fewer user evaluations), minimum requirements and assumptions
of the problem, and reliable performances [57, 74]. Within Bayesian
optimization, a surrogate model, typically a Gaussian Process re-
gression (GP), captures the properties of the target function. This
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model is continually refined with online function observations (the
result of user evaluation), enhancing its prediction accuracy. An
acquisition function utilizes the information of the surrogate model
to compute the acquisition value (i.e., the worth or potential value)
of a new candidate design. The candidate with the highest acqui-
sition value is then selected for user evaluation in the subsequent
iteration.

Bayesian optimization has found many human-involved applica-
tions where the sample efficiency is particularly important, such as
exoskeleton systems [29, 30, 80], wearable interfaces [21, 42], haptic
displays [14, 42], input techniques [45], and design tools [13, 32, 33,
56]. Despite its robust performance and relatively better efficiency
over other optimization approaches (simulated annealing, evolu-
tionary algorithms, etc.), a key limitation of BO lies in its “cold-start”
problem. Since BO generally starts without any prior knowledge
of the objective function, it must rely on random exploration in
the early stages, which can slow down convergence. To address
this, recent work has explored incorporating transfer learning and
meta-learning to accelerate the optimization process, which we will
review in the next subsection.

2.3 Meta-learning for BO

Meta-learning [82] is a machine learning paradigm that aims to
accelerate learning on a novel task by leveraging experience from
previous tasks with a similar structure. This idea has also been
extended to Bayesian Optimization (BO), where it is known as
meta-BO: instead of optimizing each problem from scratch, the
optimizer draws on past optimization tasks to guide search on a
new one. In our setting, a task corresponds to optimizing the inter-
face for a specific user, making meta-BO a natural fit, as it enables
rapid adaptation when a new user arrives. Recent surveys, such as
Bai et al. [3] provides a comprehensive overview of recent meta-
BO methods. A common approach is to merge all data from prior
tasks into a single unified surrogate model, often implemented with
multi-task Gaussian Processes (GPs), sparse GPs, or other imple-
mentations [5, 12, 78, 87]. This unified surrogate is then used to
guide optimization for a new user. Another line of work constructs
separate surrogate models for each task, and combines their pre-
dictions through a weighted sum for a new task [39, 72, 85]. These
methods are conceptually simple, easy to implement, and have
been applied in HCI contexts [40, 41]. However, both suffer from
scalability issues as the number of past tasks grows: the unified
model requires cubic-time GP inference, whereas the weighted-sum
methods scale linearly.

In this work, we exploit the fact that user models can generate
unlimited synthetic data, providing far richer information than prior
data in typical meta-BO settings. However, leveraging this large-
scale dataset requires meta-BO methods that scale with the number
of tasks and volume of data, which classical approaches cannot
satisfy. We therefore follow a third direction in meta-BO: replacing
hand-crafted components of BO with deep neural networks [22,
84], enabling efficient inference even with a large number of prior
tasks. Our NAF" is built upon Volpp et al. [81], which replaces the
manually crafted acquisition function with a deep neural network,
called Neural Acquisition Function (NAF). Pre-trained with data
from optimization across users, NAF learns a general strategy to
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select the next design candidates promising to be evaluated. While
individual users may differ in their behaviors or preferences to
some extent, we assume an underlying shared structure across
user-optimization tasks that meta-BO can learn and transfer. Note
that the acquisition function in NAF? is trained via reinforcement
learning, which we describe in more detail in the next section.

3 Human-in-the-Loop Optimization with
Model-Informed Priors

Our first contribution is the introduction of a novel conceptual
framework, which we term HOMI, and the corresponding steps of
pretraining meta-BO with synthetic users. While NAF* represents
one possible realization, the HOMI framework is intended to be
general and extensible, enabling future work to explore alternative
implementations. Below, we outline the core components of the
framework.

3.1 Core Elements of HOMI:

HOMI is an interactive framework built upon three key compo-
nents: meta-Bayesian optimization (meta-BO), user models,
and end-users. Within the HOMI framework, Meta-BO refers
to a computational optimizer trained across a distribution of syn-
thetic users operating on the same interaction. During the optimizer
training phase, meta-BO interacts with synthetic users generated
from selected, relevant user models. Since these interactions are
simulated, the optimizer can perform an unlimited number of eval-
uations to learn generalized adaptation strategies. User models
are parameterized functions (e.g., Fitts’ law) that simulate user be-
havior and performance. By sampling different model parameter
settings, we can generate a diverse population of synthetic users,
each representing different motor abilities, interaction speeds, or
usage contexts. End-users are real human participants interacting
with the system during the deployment phase. During this phase,
meta-BO observes users’ real-time feedback, such as performance
metrics, interaction preferences, or other behavioral data, and uses
it to rapidly infer user-specific characteristics and identify optimal
designs with as few evaluation iterations as possible.

3.2 General Steps in HOMI:

Figure 1 illustrates the four main steps in the HOMI framework.
Note that the first three steps comprise the offline meta-BO training
phase, while only the fourth step occurs during real-time deploy-
ment.

Step 1: Model selection. HOMI framework requires synthetic
users with varying performances to train the optimizer. These syn-
thetic users are generated by parameterized user models [68], where
varying model parameters correspond to different user abilities,
devices, or usage contexts. For example, for typing and target selec-
tion, Fitt’s law is the established model for predicting the movement
time, which can be parametrized to predict performance with dif-
ferent devices or different abilities. The key novelty of HOMI is
leveraging these models to simulate a large range of typical user
behaviors by systematically varying parameters across a range of
values.
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For many interaction tasks, such parameter ranges are provided
in the literature. For pointing and target selection, prior work re-
ports Fitts’ law parameters across devices and conditions [50, 76].
For touch input, studies provide Gaussian touch-error models with
empirically validated parameters [10, 63]. For text entry, typing
models offer parameterized keystroke latencies and error distri-
butions [52, 75]. Similarly, models for continuous motion, such as
the Steering Law, include validated parameter sets [2]. Together,
these models allow researchers to construct diverse synthetic users
by sampling from known parameter ranges or making informed
parameter choices, without collecting new user data or refitting
models from scratch. In summary, the first step of HOMI is to iden-
tify task-relevant models that capture how design variations affect
user performance.

Step 2: Synthetic user generation: Given selected models and
parameter ranges, synthetic users are generated by sampling model
parameters from the corresponding distributions. Each synthetic
user represents a distinct set of user characteristics, leading to a
diverse simulated population.

Step 3: Meta-BO training with synthetic interactions: Be-
fore deploying to the end-users, meta-BO interacts with these syn-
thetic users to learn how to efficiently identify optimal designs
across different user profiles. Since synthetic evaluations are in-
expensive compared to human evaluations, this phase allows for
large-scale training. The diversity of synthetic users further ensures
the optimizer does not overfit to specific traits, but rather learns
transferable strategies for personalization.

Step 4: Human-in-the-loop optimization: The trained opti-
mizer, meta-BO, is deployed with real users, leveraging prior experi-
ence to adapt quickly and effectively to individual needs, ultimately
addressing the cold-start problem.

4 Neural Acquisition Function*

To realize the concept of HOMI, we introduce a novel meta-BO
method for HCI purposes: Neural Acquisition Function* (NAFY).
The central idea behind NAF" is to replace the manually designed
acquisition function in Bayesian Optimization with a neural net-
work, trained on synthetic user data. This enables the optimizer to
learn efficient adaptation strategies prior to deployment, resulting
in faster convergence during real-time human-in-the-loop opti-
mization. Our NAF" is built upon a key previous work, Neural
Acquisition Function (NAF) [81], and extends it with two novel
features that offer designers flexibility and ensure robust perfor-
mance for real-world users. In this section, we first introduce the
necessary preliminaries: standard acquisition functions in BO, rein-
forcement learning (the core training method behind NAF), and the
original NAF formulation. We then present the core contributions
and architectural enhancements of our proposed NAF*.

4.1 Preliminaries

1. Acquisition functions and surrogate models in BO. BO has two
core components: a surrogate model and an acquisition function.
The surrogate model fits the observed design points (x) and corre-
sponding objective values (y), enabling prediction of the posterior
mean and variance of the objective function at any candidate x.
The acquisition function utilizes the surrogate model’s predictions
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to compute “acquisition values” across the design space, and the
candidate with the highest value is selected for evaluation. EI is
one of the most widely adopted acquisition functions in BO due to
its simplicity, closed-form expression, and robust performance in
balancing exploration and exploitation. Formally, EI at a candidate
point x is defined as:

El(x) = E[max(0, f(x) — f(x"))]. (1)

where f is the objective function being optimized and f(x*) denotes
the best observed objective value so far.

A shared limitation of conventional acquisition functions is that
they are not task-specific: they are fixed and do not learn from prior
experience, even when tasks share similar characteristics. This
missed opportunity limits their efficiency, especially in human-in-
the-loop settings where evaluations are costly and rapid adaptation
is required. This motivates a shift toward learned acquisition func-
tions, in which the acquisition function is learned from prior data.
The data is collected from similar users or, in our case, synthetic
users, allowing it to generalize across users or tasks.

2. Deep reinforcement learning. Neural Acquisition Function (NAF)
is an approach that allows the optimizer (meta-BO) to learn a task-
specific acquisition function using a neural network. Instead of
relying on a fixed acquisition function like Expected Improvement
(EI), NAF aims to learn a search strategy that is tailored to a type of
optimization problems which shared similar characteristics. A key
challenge in learning such an acquisition function is the absence of
ground truth labels. That is, there is no “correct” acquisition value
to supervise the training. The predictions are inherently uncer-
tain, noisy, and task-dependent. To overcome this, NAF is trained
using reinforcement learning (RL). The neural network generates
acquisition function values across the design space. The design
candidate with the highest score is selected for evaluation. The
outcome of this evaluation (i.e., the observed objective function
value) is then converted into a reward signal: promising evaluation
results yield positive rewards, while poor results generate negative
feedback. Over time, the model learns to associate high acquisition
values with promising candidates from its current status, refining
its search policy. Viewed from an RL perspective, meta-BO acts as
an RL agent, and the neural acquisition function (NAF) serves as its
policy model, determining which action (i.e., which design candi-
date) the agent should take in each iteration given the GP’s status.
This formulation enables task-level learning, where the acquisi-
tion policy improves through repeated interaction with synthetic
training tasks.

Here, we briefly define the key terms of RL to better introduce
NAF. For a more detailed introduction to reinforcement learning,
we refer readers to Sutton and Barto [77] and Li [38]. RL is a ma-
chine learning paradigm that trains an agent to develop a policy for
making decisions to maximize the reward signals within a given
environment. The state that the agent observed at time step ¢ is
usually denoted as s; € S, where S is the state space. The agent’s
action at time step ¢ is denoted as a;, which is determined by its
policy 7. The action taken (a;) will let the agent move onto the next
state (sz4+1). Such a transition is also mostly based on a probability
distribution, denoted as p(sz+1s¢, ar). Accompanying the transmis-
sion from s; to s;4+1, the agent receives a reward signal, denoted as
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r¢, which is determined from a reward function (r). We can further
denote the reward received at t as such, r; = r(ss, az, s¢+1). The
agent learns the policy via trial and error, aiming to maximize the
cumulative discounted future reward based on its policy.

Our NAF* follows Volpp et al. [81] to train the neural acquisition
function using Proximal Policy Optimizations (PPO) [73]. We frame
each optimization task as an RL episode: the GP surrogate defines
the state, the NAF outputs acquisition scores as the policy, and
selecting a design corresponds to taking an action. The observed
objective value provides the reward. Across many synthetic tasks,
PPO updates the NAF to learn an acquisition policy that generalizes
beyond any specific function. Unlike prior work, our formulation
incorporates human-centered requirements directly into the reward
structure and training tasks, enabling the acquisition function to
adapt to HCI scenarios. More details will be expanded in subsec-
tion 4.4 and Table 1. The results showed that NAF* enables faster
convergence than other methods, particularly showing statistically
better performance than TAF in the second and third iterations.

3. Neural Acquisition Function (NAF). NAF keeps GP as the sur-
rogate model of the task, allowing it to model the properties of
the current optimization based on the real-time observations. NAF
employs a neural network to generate the acquisition values. In the
original paper, NAF (the model itself) at timestep ¢ is a; g, where
0 indicates that it is parameterized by a neural network. Similar
to standard acquisition functions, NAF takes the information of
the GP model as the input. A GP defines a continuous predictive
function over the entire design space and can be queried at arbi-
trarily many points. In contrast, our NAF is a deep neural network
that requires a fixed-dimensional input vector to summarize the
whole GP’s information. Following Volpp et al. [81], the design
space X is discretized into a set of points x. For each candidate x,
NAF receives the GP’s predicted mean p;(x) and standard devia-
tion oy (x) as input features. Since the GP evolves with incoming
observations, these features are dynamically updated at every it-
eration. In the original implementation, the set of x5 was selected
dynamically at each step. To simplify training and ensure stable
input representation, we adopt a fixed set of x; throughout the
optimization process. Additionally, to help the model account for
optimization progress and urgency, NAF includes a budget-aware
input: the percentage of optimization completed, calculated as the
current iteration index divided by the total allowed iterations. This
allows NAF to modulate its exploration-exploitation behavior over
time. The output of the neural network is a categorical distribution
over the discretized candidates, where each probability corresponds
to the predicted acquisition value of selecting a specific xs. During
training, the next design candidate is sampled from this distribution,
and the selected candidate is evaluated in the next iteration. During
deployment, NAF directly selects the design candidate that has the
highest acquisition value (value generated from NAF). We refer the
readers to the original paper for more details about NAF [81].

4. Summary and Limitations of NAF. NAF has a key advantage: it
can be trained with unlimited data without incurring computational
overhead at deployment. This makes NAF particularly well-suited
for our HOMI, where synthetic users can be generated in virtually
unlimited numbers via model sampling. However, NAF has critical
limitations when applied to real-world optimization tasks. First,
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NAF is inherently designed to optimize for a single, fixed objective.
In practice, many interactive systems involve multi-objective trade-
offs, such as balancing speed and accuracy in input tasks, or comfort
and visibility in interface layout. NAF lacks the flexibility to adjust
its optimization strategies when design objectives or user priorities
shift. Second, NAF, as a deep learning model, performs well only
when test-time tasks fall within the distribution of training tasks.
When applied to HILO, that is, NAF can only perform well when
the real user’s performance characteristics are highly aligned with
the synthetic users’ performance profile used during training. NAF
is likely to fail if real-world user performance deviates significantly
from the synthetic users’ performances (i.e., constitutes an out-of-
distribution task), which is likely given that human behaviors are
inherently noisy and diverse.

4.2 Overview of NAF*

To address the aforementioned challenges, we introduce NAF*, a
new approach that builds upon NAF but incorporates two critical en-
hancements: the ability to dynamically adjust to multi-objective for-
mulations, and fallback mechanisms for handling out-of-distribution
users. These enhancements make NAF* more flexible, generalizable,
and better-suited for real-world human-in-the-loop applications.
We assume that the target application involves multiple design objec-
tives, which are eventually aggregated into a single scalar objective
via a weighted-sum formulation; this is an approach commonly
found in HCI work [4, 41]. Our contribution lies in training NAF*
such that it can support dynamic setting of objective weights dur-
ing deployment without requiring any retraining, which allows
the optimizer to respond to varying user needs or preferences on
the fly. We also assume that while novel users (whose behavior
significantly deviates from synthetic users) may appear during de-
ployment, they can still benefit from standard BO mechanisms (e.g.,
exploration via typical acquisition functions). Therefore, NAF* in-
tegrates a fallback mechanism to maintain robustness when facing
novel, unseen users.

As illustrated in Figure 2, NAF* has four key components to
jointly achieve these enhancements: (1) GP-based surrogate model
(GP): This component models the objective function based on the
user’s observed performance data. (2) Neural acquisition func-
tion (naf): This deep neural network replaces hand-crafted ac-
quisition functions by learning a task-specific policy. Unlike the
original NAF, our model is explicitly trained to condition on objec-
tive weights, enabling it to adjust its search strategy according to
the prioritized trade-offs during deployment. To distinguish it from
the original method, we refer to our version in lowercase: naf. Two
more elements are introduced to mitigate the novel user challenge:
(3) Expected Improvement (EI): An acquisition function used
as a fallback. When the neural model performs poorly (e.g., due to
encountering a novel user), EI provides a stable and exploration-
oriented alternative. The acquisition values produced by naf and
EI are combined via a weighted sum. (4) Novelty detector: This
module estimates how novel the current user is with respect to
the training distribution. Based on this assessment, it dynamically
adjusts the weight between the neural acquisition score (naf) and
the EI score. As novelty increases, more weight is placed on EI to
ensure robust performance.
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Figure 2: Our Neural Acquisition Function* (NAF*) has four main components. Here, we illustrate how they work together
using keyboard adaptation as an example case. The surrogate model (Gaussian Process regression) captures the properties of
the target user. The information of GP will then allow the neural acquisition function (pre-trained by synthetic data) and the
typical acquisition function to generate a set of acquisition values. A novelty detector estimates how likely the new user is
different from our training dataset based on the current observations; this information is then used to condition the aggregation

of two acquisition functions. Finally, NAF* suggests a design that is most likely to yield optimal user performance.

Note that two of the four elements (the GP and the EI) follow stan-
dard BO, and the naf component is adopted from prior work [81].
Our contribution lies in integrating these components and adapting
them to the unique challenges of human-centered optimization,
including dynamically weighted objectives and out-of-distribution
users. We expand the details of each component below.

4.3 Element 1: GP-based Surrogate model (GP)

The surrogate model reflects the ongoing user’s performance. We
follow the typical BO framework and employ a standard GP. Please
refer to subsection 4.1 for a more detailed introduction.

4.4 Element 2: Neural Acquisition Function
(naf)

The naf model in NAF? is a neural network trained to generate ac-
quisition values for a specific interaction scenario, learned through
interactions with synthetic users. We denote the naf model as a; g,
where t indicates the current timestep and 6 corresponds to the
neural network parameters. Our training process follows the gen-
eral framework introduced in the original NAF paper [81], with
key extensions tailored to the requirements of HCI tasks.

First, we discretize the design space X into a fixed grid of can-
didates {x;}. For each candidate x;, where i indexes the grid, the
surrogate model (a Gaussian Process) provides a predicted mean
1y (x;) and standard deviation o;(x;) at optimization iteration ¢.
These values form the core input features to naf, representing the
model’s current belief about the design space. To enable dynamic
adaptation over time, we include a budget-awareness signal: the
proportion of the optimization process completed, calculated as
t/T, where T is the total optimization budget. This allows naf to
shift its strategy from exploration in early iterations to exploitation
in later stages.

A key innovation in NAF* is its ability to support dynamic
multi-objective optimization during deployment. To enable this, we
append N additional input values to the input vector, where N is
the number of design objectives. These values represent the weights
assigned to each objective under the current trade-off configuration
(e.g., w1, wa,...,wy). For example, in a two-objective task with
equal weights [0.5,0.5], the input vector to naf will include these
two values at the end, allowing the model to adapt its acquisition
strategy accordingly. The full input to naf at iteration ¢ is thus:

[pe(x1), 0 (x1), - .o pe (x5), 01 (x5), £/ T, wi, wa, ..., wN].  (2)
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The output of naf is a categorical distribution over the s candidate
points, denoted as CAT [nvy,, nvy,, . . ., nvy, ]. Essentially, each nvy,
value represents the naf-generated acquisition value at a given de-
sign candidate x; across the full grid xs. Table 1 summarizes the RL
formulation used in our meta-BO training pipeline. During training,
a candidate design is sampled from this distribution to encourage
exploration. During deployment, however, the design with the high-
est predicted acquisition probability is selected deterministically to
maximize performance.

4.5 Element 3: Expected Improvement

A typical EI serves as the fallback acquisition strategy, with details
provided in subsection 4.1. We apply EI to each discretized candidate
x; € {xs} in the design space, producing a parallel set of acquisition
scores El(x;). These scores are then combined with the values
generated by the neural acquisition function (naf) to form the
final acquisition values used for decision-making. The weighting
between naf and EI is dynamically adjusted based on a novelty-
aware mechanism, described in the following section, ensuring
robustness when encountering out-of-distribution users.

4.6 Element 4: Novelty Detector

The novelty detector in NAF* is a probabilistic module that esti-
mates how likely a new user is to be out-of-distribution (i.e., sig-
nificantly different from all previously seen synthetic users). Its
primary role is to dynamically determine the weighting between
the neural acquisition function (naf) and the fallback strategy (EI)
when selecting the next design candidate.

At its core, the novelty detector is implemented as a Bayesian
Neural Network (BNN), trained using the full set of (x, y) pairs —
design candidates and their corresponding objective function values
— collected from synthetic users during pre-training. This training
allows the BNN to approximate the population-level distribution
of performance across diverse user characteristics, effectively mod-
eling expected outcomes under a wide range of known conditions.

During deployment, when a new observation (x, y) is collected
from a real user, the BNN outputs a posterior predictive distribution
for x, characterized by a mean p;(x) and standard deviation oy (x).
Using this, we compute the standardized z-score:

36
o1 (x)

We then convert the z-score into a two-tailed p-value using the
cumulative distribution function ®(-) of the standard normal distri-
bution: p = 2 - (1 — ®(]|z|)). The p-value quantifies how surprising
the real user’s performance is under the model trained on synthetic
users. A low p-value (e.g., close to 0) indicates high novelty and sug-
gests the user is likely out-of-distribution, whereas a high p-value
indicates the user is well represented in the training data.

Over time, we accumulate multiple (x, y) pairs from the same
user and compute a running average of the p-values, denoted p. We
use this average to determine the contribution of EI in the acqui-
sition strategy. Specifically, if p falls below a pre-defined novelty
threshold 7, we consider the user to be novel. The final acquisition
score A(x) used to select the next design candidate is computed as
a weighted combination of the naf and EI scores:

®)
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A(x) = Apr - EI(x) + (1 — Agp) - naf(x) 4)
where the EI weight Agy is computed as:
1 ifp=0
AEI =130 ifp>1 &)
=P otherwise

T
This weighting mechanism ensures a smooth transition: when
the user appears entirely novel (p = 0), full weight is given to EI;
when the user aligns with the training distribution (p > r), EL is
ignored; otherwise, the influence of EI scales linearly based on the
level of novelty.

4.7 Training and Deployment

naf is trained with a large number of synthetic users. Then, we
obtain a large collection of design-performance pairs (x,y) rep-
resenting population-level behavior, which are used to train the
novelty detector. During deployment, the novelty detector assesses
the novelty of the user and adjusts the weight assigned to EI, as
described in Equation 4. We set a minimum iteration threshold
K = 3, so that the weighted-sum mechanism for acquisition values
is activated from the 4th iterations, ensuring that naf maintains
full control during the initial 3 iterations.

4.8 Synthetic tests

Before conducting the user study, we designed two synthetic eval-
uations to systematically validate NAF*. These tests serve as con-
trolled environments to probe capabilities that are difficult to isolate
in live studies. Specifically, we focused on three goals: (G1) bench-
marking against established baselines: standard BO and Transfer
Acquisition Function, which is an established meta-BO method
used in prior HCI works [41, 85]; (G2) verifying that NAF* can
adapt to dynamic trade-offs between multiple objectives via ex-
plicit weight inputs; (G3) evaluating robustness when encounter-
ing users whose behavior falls outside the training distribution.
To cover both abstraction and realism, we used two tasks: a con-
trolled double-Sphere benchmark (Test 1) for clean comparisons,
and a semi-realistic typing simulation (Test 2) grounded in Fitts’
law and touch error models on a touchscreen to mirror our target
VR keyboard task in the user study.

Key findings. Across both tests, NAF* consistently demonstrated
advantages over baselines. For G1 (baseline comparison), it con-
verged faster than standard BO and TAF, particularly in the early
iterations where efficiency is most critical. For G2 (dynamic ob-
jective weighting), conditioning on explicit weight inputs en-
abled NAF* to adapt its search strategy more effectively than the
ablated variant without weights, confirming its ability to handle
shifting priorities in multi-objective optimization. For G3 (robust-
ness to novel users), the novelty-aware fallback proved essential:
when synthetic users were sampled outside the training distribu-
tion, NAF* recovered and improved steadily, while the no-fallback
variant stalled and BO/TAF required more iterations to catch up.
Together, these results establish that NAF* combines sample effi-
ciency, flexibility, and robustness, making it well-suited for real-
world HILO where the weights on multiple objective can be adjusted



Efficient Human-in-the-Loop Optimization via Priors Learned from User Models

CHI *26, April 13-17, 2026, Barcelona, Spain

RL Component

NAF*' Equivalent

Policy g

Episode

Episode length T

State s;

Action ay

Reward r;

Transition p(s¢+1|sz, ar)

Neural acquisition function (naf) a; g
Optimization episode with a synthetic user
Optimization budget T

[pe (xs), 01 (x5), /T, w1, ..., wN]

Selecting a design candidate x; € X

~(fmax — f(x¢)) (negative regret)
Noisy observation of f(x;), GP update

Table 1: The RL formulation and mapping of NAF*.

dynamically and users can vary dramatically. The results of the
synthetic tests are presented in the Appendix.

5 User Study: NAF* for Mid-Air Keyboard
Adaptation

We conducted a user study to evaluate the effectiveness of NAF*
in a classic HCI task: mid-air typing in virtual reality; the inter-
action is shown in Figure 3. Participants completed ten iterations
of typing (each consisting of one to two sentences) with adaptive
keyboards with varying key height and width, generated by three
methods. Subsections 5.1-5.4 describe the study design, including
the experimental conditions (methods), the user models used to
train NAF?, the objective function, and the study apparatus. The
study was conducted in two phases. Phase 1 (Subsection 5.5) pro-
vided data to pre-train two optimization methods, TAF and NAF*.
Subsection 5.6 details the implementation and training procedure of
NAF*. Phase 2, the final evaluation, is described in Subsections 5.7
(study setup) and 5.8 (results). Finally, Subsection 5.9 presents our
discussion of the study findings.

5.1 Overall Study Design and Conditions

We compared three optimization methods: our proposed NAF™,
Transfer Acquisition Function (TAF) [41, 85], and Continual Bayesian
Optimization (ConBO) [46]. Both TAF and ConBO represent state-
of-the-art baselines. TAF adopts a meta-learning approach, where
prior user data from complete HILO processes is leveraged to con-
struct transferable models for new users. ConBO instead follows
a continual learning approach: each user’s data directly serves as
prior knowledge for subsequent users, without explicitly distin-
guishing between prior and target users.

To mitigate fatigue and learning effects, we constrained the
study duration to one hour. Under this constraint, we limited the
evaluation to three adaptation methods. Prior investigations have
shown that standard Bayesian Optimization typically underper-
forms compared to approaches augmented with prior data [45, 46],
so we excluded it as a baseline. Similarly, prior work demonstrated
that manual calibration achieves performance comparable to prior-
data-based optimization [41, 46], though in a substantially different
setting where participants tuned the interface in advance. We there-
fore also excluded manual calibration from our study conditions.

Among the three selected methods, both NAF* and TAF require
pre-training, and the study was therefore organized into two phases.
Phase 1 collected typing data to pre-train both methods, following
protocols established in prior work [11, 41]. For NAF", this data

was used to fit the parameters of existing analytical typing models
(Fitts’ Law and the DGD model) to our specific interaction context.
While these models are well-established, no prior work has pro-
vided fitted parameters for the mid-air keyboard with direct touch;
future work could bypass this step by reusing our fitted distribu-
tions. Also, other applications can potentially bypass this step and
directly train NAF? if reliable model parameters have already been
estimated, such as touchscreen interactions where typing errors
and movement time are well studied. For TAF, the same Phase 1
data was required to construct Gaussian Process (GP) models of
prior users. Using a shared dataset for both methods ensures fair-
ness: since TAF necessarily requires empirical data, we leverage
the same data to calibrate NAF*.

5.2 Typing Simulation for Training NAF*

To train NAF', we implemented a generative simulation of sentence
typing that models the motor execution and touch uncertainty of
a human typist. The simulator combines two established models
of touchscreen interaction: Fitts’ Law for movement time estima-
tion [51] and the Dual Gaussian Distribution (DGD) model for touch
accuracy [9-11].

Each simulated user is parameterized by a 6-dimensional vector
0 = [a,b,ax, 0q,, ay, cray], which captures their motor and per-
ceptual characteristics. The parameters a and b govern movement
speed, while & and ¢ terms control touch precision and variability
in the horizontal and vertical directions.

Movement time. The time to move between successive keystrokes
is modeled using the classical Fitts’ Law equation:

MT:a+b-logz(%+1), (6)

where D is the Euclidean distance between the current and target
key centers, and W is the smaller dimension of the key.

Touch distribution. Upon reaching a target key, the simulator
samples a touch point from a 2D Gaussian distribution centered on
the intended key:

le'W2+O',§,x 0

2= 0 ay-H2+0'2y ’ )

This covariance formulation reflects the DGD model, where touch
precision is influenced by both absolute noise (o) and a size-dependent
term (o). Unlike prior work that analytically integrates over the
distribution [11], we simulate keystrokes via Monte Carlo rollouts:
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each touch sample is checked against the target key boundaries,
and marked as correct or erroneous.

Sentence typing. Test sentences are drawn from the Enron Mobile
Email Dataset!, with special characters removed and concatenated
to a length at least 26 characters. Typing proceeds sequentially:
the simulator begins at the spacebar, moves to each target key,
samples a noisy landing point, and records both movement time
and correctness. Additional Gaussian noise (o = 0.15 s) is added to
capture motor variability. This procedure yields average movement
time and error rate for a given keyboard layout. These settings
remain identical in both our simulation experiments (Appendix B)
and the user study.

5.3 Objective Function and Task Setting

Our goal is to optimize the key’s height and width of mid-air key-
boards. The simulator outputs two primary metrics: typing speed
(words per minute, WPM) and error rate. To combine them into a
single scalar measure, we normalize each into unitless functions of
Speed and Accuracy.

Through a 3-person pilot test, we determined that typing speed
typically ranged between 5 WPM (worst) and 22 WPM (best). We
therefore linearly normalized this range such that 5 WPM maps
to 0 and 22 WPM maps to 1. Error rate, computed via Levenshtein
distance, was observed to range between 0% (best) and 30% (worst).
We similarly normalized this range so that 0% error maps to 1
and 30% to 0. While a 30% error rate may appear higher than in
prior work, this upper bound is necessary in our adaptation setting,
where small keyboards can lead to frequent errors.

Finally, speed and accuracy are combined in a weighted objective
function:

Objective = wgpeed - Speed + Waccuracy - Accuracy, (8)

where we set Wspeed = 0.7 and Waccuracy = 0.3 for the two phases
in the user study. Other studies may adjust the weights to reflect
different priorities.

In short, this setup captures the fundamental trade-off in mid-
air typing: larger keys improve accuracy but increase movement
times, while smaller keys accelerate typing but risk higher error
rates. We therefore restrict the design space to keyboard widths
and heights between 20 mm and 40 mm, and optimize within this
range to maximize the objective in Equation 8.

5.4 Study Apparatus and Implementation

The virtual keyboard and typing experiment were implemented
in Unity and executed on a Windows 10 desktop with an NVIDIA
GeForce RTX 3050 GPU. We built the keyboard on top of the MRTK
keyboard framework?, which we customized to support adaptive
resizing of key height and width. The study was conducted on a
Meta Quest Pro headset, as shown in Figure 3. Target sentences
were sampled from the Enron Mobile Email Dataset, with special
characters removed and multiple sentences concatenated to en-
sure a fixed length of 26 characters (excluding the space key) per
iteration.

!https://www.keithv.com/software/enronmobile/
Zhttps://github.com/microsoft/MixedRealityToolkit-Unity
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5.5 Phase 1: Gathering Data for NAF* and TAF

The goal of Phase 1 was to collect training data to acquire typing
models for NAF* and Gaussian Process (GP) models for TAF.

5.5.1 Procedure. Five participants (2 female, 3 male; age 27-32)
were recruited for Phase 1. Participants were instructed to type
the presented sentences as quickly and accurately as possible on
the mid-air keyboard. Before the main session, each participant
completed 10 practice rounds with randomly varying keyboard
dimensions to familiarize themselves with the adaptive setting.
During the experiment, the keyboard remained at a fixed position
(30 cm in front of the participant and tilted at —20° relative to
the horizontal plane), while only its width and height adapted.
Each participant then typed 20 sentences, making the session last
approximately 30 minutes, including practice.

To acquire data suitable for both TAF and NAF*, we adopted
a hybrid procedure. In the first five iterations, keyboard dimen-
sions were selected from evenly spaced values across the design
space ([20, 25, 30, 35, 40] mm) for both width and height, presented
in randomized order. These evenly spaced settings ensure suffi-
cient coverage for fitting typing error models (subsection 5.2). For
the remaining 15 iterations, we used Bayesian optimization: the
weighted objective (Speed + Accuracy) from prior trials was fitted
to a surrogate model, and the acquisition function suggested new
candidate designs. The full set of 20 iterations thus provided both
uniformly sampled data for model fitting and adaptively sampled
data for training GP priors in TAF.

Within each iteration, 26 key presses were recorded. We omitted
the first six presses as a warm-up, leaving 20 effective key presses
per iteration. Participants were instructed not to delete or correct
typos. In cases where a participant attempted correction (e.g., typing
“a” instead of “s,” then pressing “s” again), only the first (incorrect)
press was retained for analysis.

5.5.2  Results. From the collected data, we constructed five GP
models to serve as prior models for TAF. In parallel, we applied
simple linear regression to approximate parameter values of the
typing models. For each participant, individual parameter values
were estimated and then summarized across participants as means
and standard deviations.

For Fitts’ Law, the parameters were a = 0.164 + 0.0352s and b =
0.39+0.171 s. For the error models, we obtained a,, = 0.0148+0.0011,
oy = 15.52 + 2.093, ay = 0.0133 + 0.0011, and o, = 15.93 + 1.46.
These values provide empirical ranges for simulated users and serve
as priors for model-based optimization in Phase 2.

5.6 Implementing and Training NAF*

Before Phase 2 of the user study, we prepared NAF" by generating
synthetic users, and implementing and training its components.

5.6.1 Creating Synthetic Users. Based on the parameter distribu-
tions estimated in Phase 1, we generated synthetic users by sam-
pling from normal distributions over the six parameters (a, b, ax,
Oa,, Oy, Oa, ). Each sampled parameter set corresponds to a unique
synthetic user. Given a keyboard configuration, a synthetic user
simulates typing behavior and outputs Speed and Accuracy, which
are combined via the objective function (Equation 8). This approach
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Figure 3: Our user study aims to personalize the mid-air keyboard’s key height and width using three methods: our NAF",
Transfer Acquisition Function (TAF), and Continual Bayesian optimization (ConBO). TAF and ConBO are both existing BO
approaches for achieving efficient HILO with prior experience. Here we present some possible keyboard variants within the

design parameter range.

enables large-scale training of NAF*twithout additional human data
collection.

5.6.2 Implementation of NAFt. NAF" consists of three compo-
nents: the naf policy network, a BNN-based novelty detector, and
a GP model. The naf network is a six-layer fully connected neural
network, with 256 units per hidden layer and Tanh activations. The
novelty detector is implemented as a two-layer fully connected
Bayesian neural network (BNN) with 256 units per layer, using
dropout (p = 0.2) to approximate weight uncertainty. At inference
time, multiple stochastic forward passes are performed to estimate
predictive mean and variance, which are converted into z-scores
and novelty p-values. The GP model is implemented using the
botorch library as a single-task Gaussian Process>.

5.6.3 Training of NAF. The naf network is trained using Proxi-
mal Policy Optimization (PPO) [73]. The actor and critic share the
same architecture, with learning rates of 0.0003 and 0.001, respec-
tively. PPO is run for K = 10 epochs with a clipping parameter of
0.15. Although the user study employs fixed weights (wspeed = 0.7,
Waccuracy = 0.3), we train naf to generalize across different weight-
ings by randomly sampling (wgpeed, Waccuracy) during training. Syn-
thetic users are dynamically generated throughout training, and
the process continues until 80,000 steps are reached.

For the novelty detector, we consider 11 weight combinations by
setting wgpeed € {0,0.1,0.2,.. ., 1.0} and waccuracy = 1 = Wspeed- For
each weight setting, we sample 20 synthetic users and evaluate 100
keyboard layouts (grid search), yielding 2,000 performance profiles

3https://botorch.org/docs/models/

per weight condition. These datasets are then used to train BNN
models for novelty detection, each trained for 2,000 epochs.

5.7 Phase 2: Evaluation of Different Methods

In Phase 2, we evaluated three optimization methods for human-in-
the-loop mid-air keyboard adaptation: our proposed NAF*, Transfer
Acquisition Function (TAF), and Continual Bayesian Optimization
(ConBO).

5.7.1 Study Design and Procedure. The study employed a within-
subject design with 12 participants (5 female, age 24-33). Each
participant completed three blocks, one per optimization method,
with order counterbalanced using a Latin square. In each block,
participants typed 10 sentences (iterations). Before any block, the
participants had a short practice session of 10 sentences where
the keyboard dimension changed randomly. Between blocks, a 5-
minute break was provided to reduce fatigue. The entire session
lasted less than 60 minutes per participant. Finally, the participants
were asked to fill in the raw NASA-TLX questionnaire followed by
an open-ended interview.

5.7.2 Methods.

NAF*. We described the implementation of NAF* in Section 5.6.
The novelty detector automatically selected the correct objective
weight combination (Wspeed = 0.7, Waccuracy = 0.3). We set the
novelty detector threshold 7 = 0.1. This choice aligns with common
statistical practice, where a p-value below 0.1 is often interpreted as
an indicator of outliers or model mismatch. Because our novelty es-
timate is based on the running average of p-values across iterations,
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a slightly more permissive threshold also ensures that the system
can detect meaningful deviations early. This is also the value we
used in the synthetic tests, shown to be an effective setting. Impor-
tantly, the novelty detector begins at the fourth iteration. In the
initial three iterations, EI weights are set to be 0, and the weights
assigned on naf is set to be 1.

Transfer Acquisition Function (TAF). TAF relies on a set of prior
models—in our case, five GP models trained on the Phase 1 data.
During deployment, acquisition function values are aggregated
across these prior models using adaptive weights. The weights
assigned to prior users decay according to two hyperparameters
(a1, @2), so that the influence of the new user’s model increases over
time, allowing the optimization to converge toward user-specific
preferences. We followed the parameterization of prior work [41],
setting o = 4 and ap = 0.2.

Continual Bayesian Optimization (ConBO). ConBO relies on a
Bayesian neural network (BNN) population model trained on all pre-
viously observed users. Unlike TAF, ConBO does not reuse Phase 1
data; instead, the 12 participants in Phase 2 sequentially contribute
training data to the population model. For example, data from Par-
ticipant 1 updates the model, which then serves as prior knowledge
for Participant 2, and so forth. As in TAF, the final acquisition func-
tion balances the population model with the current user’s model,
assigning increasing weight to the latter to ensure personalized
optimization. We largely followed the implementation of the orig-
inal ConBO paper [46], with the same hyperparameters (ry = 6,
dr = 2). To align with TAF, we set the decay parameters to a; = 4
and ay = 0.2.

5.7.3 Results. To evaluate optimization performance across itera-
tions, we computed the objective function achieved in each iteration
and method for every participant. The final objective function val-
ues for each condition (optimization method) at each iteration are
shown in Figure 4. Note that we show and analyze the running best
objective function values (i.e., the best performance achieved up to
this iteration), which is a common practice for analyzing iterative
optimization tasks in both machine learning and HCI fields. The
raw typing speed (Figure 5) and the raw error rate (Figure 6) at
each iteration are also shown, which jointly contribute to the final
objective function.

We conducted a two-way repeated-measures ANOVA with fac-
tors Iteration (10 levels) and Method (NAF*, TAF, ConBO). There is a
strong main effect of Iteration, F(9, 99) = 27.16, p < .001, indicating
that participants’ performance, overall, improved over time. There
was no significant main effect of Method, F(2, 22) = 1.25, p = .307,
nor a significant Iteration X Method interaction, F(18,198) = 1.27,
p = .211. This indicates there is no method that is constantly better
than the other throughout all iterations, which is aligned with the
observation where three methods all converge toward the same
optimal performance in later iterations (e.g., Iteration 6 onward). To
further investigate whether different methods yield differences at
different iterations, especially early iterations, we conduct one-way
repeated-measures ANOVAs on each iteration separately. Signif-
icant effects of Method were found at Iteration 2, F(2, 22) = 3.74,
p = .040, and Iteration 3, F(2,22) = 8.02, p = .002, but not at
any other iteration (all p > .0.05). Post-hoc pairwise comparisons
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with Bonferroni correction showed that at Iteration 2, NAF* out-
performed TAF, ¢(11) = 3.49, pponf = .015, with no significant
differences involving ConBO. At Iteration 3, NAF* outperformed
both TAF, #(11) = 3.52, pponf = 014, and ConBO, #(11) = —3.41,
Pbonf = -018, while TAF and ConBO did not differ significantly.
The results show that while participants improved steadily across
iterations regardless of method and all methods ultimately con-
verge to comparable performances, NAF* provided a performance
advantage over TAF in earlier iterations (at Iterations 2-3) and over
ConBO (at Iteration 3 only).

Figure 5 and Figure 6 show the individual performance metrics
throughout the iterations achieved by three conditions. We ran
one-way repeated-measures ANOVA on each iteration across all
metrics and found that the NAF* generally led to either comparable
or significantly better performances than the other baselines. We
denote the significant differences in the figures.

Finally, we analyzed participants’ responses to the NASA-TLX
questionnaire and found no significant differences across conditions.
This result is consistent with prior work [35, 41], which similarly
reported that participants could not easily perceive differences
between adaptation methods, even when objective performance
differences were present. The primary reason was that within each
adaptation method, different keyboard designs were proposed, mak-
ing subjective comparison across methods challenging.

5.8 Findings and Discussion

5.8.1 Findings on Performance. Three methods led to performance
improvements across iterations, yet the resulting performances
diverged in the early iterations: NAF* provided an advantage in
the second and third iterations. TAF’s performance is significantly
poorer in early iterations, which can be attributed to the limited cov-
erage of its prior models. The five priors collected in Phase 1 could
not sufficiently capture the diversity of population performance,
leading to poor prediction in unexplored regions of the design space.
In principle, expanding the number of priors could improve cov-
erage and even approach optimal results. However, there are two
fundamental challenges. First, there is no clear principle for predict-
ing how many prior users are sufficient, which makes it difficult to
guarantee generalization. Second, scaling up the number of priors
linearly increases computation during deployment, rendering this
approach less practical in real-world scenarios. By contrast, NAF*
has the unique strength of not being limited to a finite set of prior
users. Instead, it can generate unlimited synthetic users by sampling
from learned parameter distributions. This synthetic population
enables extensive offline training before deployment, resulting in
more consistent early-iteration performance. In addition, the nov-
elty detector allows NAF" to flexibly adjust the weighting between
the NAF policy and the EI values calculated from the current user’s
model. This mechanism provides robustness in out-of-distribution
cases: when priors are less informative, NAF* behaves similarly to
TAF by relying more heavily on the current user’s data, ensuring
at least comparable performance.

ConBO showed promising overall performance but was less ef-
fective in the earliest iterations, primarily because the first few
participants exhibited relatively poor performance during their ini-
tial trials. The fundamental challenge of ConBO is that it learns
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Figure 4: The weighted-sum performance achieved by different conditions (optimization methods) at each iteration. This plot
presents the running best performance (i.e., the best performance of each participant achieved up to this iteration), which is a
common way of analyzing iterative optimization tasks. The * sign indicates significant differences (p < 0.05). The thicker, black
line in each box shows the mean value, and the thin, orange line indicates the median value. The results showed that our NAF*
enables faster convergence than other approaches. In particular, NAF' achieved statistically better performance than TAF in
the second and third iterations, and outperformed ConBO in the third iteration.
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Figure 5: The typing speed at each iteration, which is then contributed to the calculation of the final objective function as
described in subsection 5.3. The * sign indicates significant differences (p < 0.05). The thicker, black line in each box shows the
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gradually across users. For the first few participants, the population model contains little information, so its search behavior resem-
bles random exploration. Once enough participants are aggregated,
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other methods in the third iteration.

however, the model improves steadily. This trend is evident when
comparing the performance of early and later groups of partici-
pants: Group 1 (P1-3) = 0.37 (std = 0.12), Group 2 = 0.61 (std =
0.07), Group 3 = 0.59 (std = 0.19), and Group 4 = 0.63 (std = 0.04).
These results clearly show that ConBO benefits from accumulating
user data, but at the expense of initial participants who experience
suboptimal adaptation. In contrast, NAF* does not suffer from this
early-stage drawback, as its model is fully trained prior to deploy-
ment using synthetic users. The group-wise performances further
illustrate this stability: Group 1 = 0.54 (std = 0.10), Group 2 = 0.56
(std = 0.12), Group 3 = 0.66 (std = 0.25), and Group 4 = 0.65 (std
= 0.03). Thus, NAF" provides better performance for the initial
participants compared to ConBO.

To summarize, TAF is limited by finite priors and scalability
concerns, ConBO improves gradually but suffers from early-user
effectiveness, and NAF* combines the advantages of prior-based
learning with scalable synthetic-user generation to achieve stronger
early adaptation.

5.8.2  Importance of the novelty detector and EI. We further ana-
lyzed the contribution of EI and novelty detector by examining the
EI weights of all the participants across iterations 4-10 (at which
weighted-sum mechanism performs). The EI weights are shown in
Figure 7. Overall, we observe a gradual upward trend in EI weights,
indicating that as the optimization progresses, the optimization
increasingly relies on the EI component. A closer examination of in-
dividual EI-weight trajectories reveals different participant groups
that have distinct levels of novelty in performance characteristics:
A few participants well-modeled users, who consistently show
low and stable EI weights (e.g., 0.3-0.5). These users behave very

similarly to the predictive model’s expected performance distribu-
tions. A few participants are novel users. They show consistently
high EI weights, often rising rapidly toward the upper range (e.g.,
0.7-1.0). Their performance profiles deviate substantially from what
the predictive model expects. Yet, most participants have moderate
EI weights with small oscillations, indicating most participants
partly match the model’s expectations, which is a natural outcome.

These observations show the importance of the novelty detector
and the EI weighting mechanism. With them, NAF* can effectively
dynamically adjusts how strongly it should rely on learned pri-
ors versus current observations, maintaining efficiency without
sacrificing personalization across diverse users.

5.8.3 Qualitative analysis of the user experience with ConBO. While
no significant differences were found in NASA-TLX questions, the
first few participants in ConBO shared more frustrated experi-
ences. As previously analyzed, Group 1 (P1-P3) in ConBO exhibited
worse overall performance compared to later groups, indicating
that ConBO was still accumulating knowledge and had not yet
formed a reliable prior for personalization. In the interviews, Group
1 participants described the initial keyboards as feeling “weird,”
with “impossible ratios” or being “way too small for me to type
comfortably” They also expressed that the system did not seem
to adapt meaningfully to their behavior. For example, P2 said, “I
felt the keyboard randomly changes dimensions,” and P1 noted, “It
did not improve from where I did better” In contrast, participants
in later groups described a smoother experience. Notably, com-
plaints about impossible layouts or misaligned adaptations were
no longer observed, nor in the other conditions. Overall, these ob-
servations confirm a clear drawback of ConBO: its performance for
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acquisition.

early participants is less reliable, as the system is still accumulating
experience and has not yet formed a prior for effective optimization.

6 Discussion

We propose, HOMI, a novel concept which pre-trains meta-BO
using user models to accelerate adaptation in human-in-the-loop
settings. We further introduce NAF*, a new optimization method
that integrates a deep-learning-based acquisition function, trained
via reinforcement learning on synthetic users to support efficient
real-time adaptation. Our synthetic tests and user study validate the
efficacy of our approach. Despite these promising results, several
open questions and limitations remain.

Rethinking personalization: From model-fitting to meta-adaptation.
Traditional model-based personalization requires fitting a param-
eterized user model to each user, which often involves complex
model inverse steps before any adaptation can occur [7]. Although
recent learning-based inference approaches (e.g., amortized infer-
ence [59, 60]) have been proposed to mitigate this challenging,
model inference remains a challenging step to support real-time
adaptation to the diverse user characteristics. In contrast, HOMI
adopts a different philosophy: we do not seek to model any single
user perfectly. Instead, we train the optimizer on a broad distribu-
tion of synthetic users, enabling it to learn adaptation strategies
that generalize across populations. At deployment, no explicit user
modeling or inference is needed; the system simply adapts based
on observed performance, guided by the meta-learned policy. This
shift from high-fidelity modeling toward population-level diversity
and meta-adaptation offers a more scalable and robust path for
real-time personalization.

Re-purposing user models. User models in HCI have tradition-
ally been developed as descriptive tools mainly for characterizing
and predicting human performance, but not meant for interface
generation and adaptation. Thus, even for well-studied behaviors
such as pointing or typing, available models were rarely fitted
comprehensively across devices or modalities, because there was
little downstream use for such parameter values. This gap creates
a potential challenge for HOMI: our workflow benefits most when
reliable models and parameter ranges already exist, enabling us to
bypass the parameter-fitting step. Our HOMI and NAF* introduce
a fundamentally different purpose for user models: transforming
them from passive analytic tools into active enablers of interface
optimization, adaptation, and even generation. This re-positioning
creates an actionable incentive for the community: rather than
treating user models as isolated theoretical artifacts, we encour-
age documenting, validating, and sharing their parameter values
across interactions, devices, and modalities. A collaboratively main-
tained gallery of models and parameter distributions. That is, not
just equations, but reusable parameter sets, would unlock scalable
synthetic-user—driven optimization and significantly broaden the
applicability of HOMI-style workflows across HCI.

Extending to other applications. Our approach is built upon the
broad framework of BO and RL, which have shown strong scala-
bility and generalizability across applications. In future work, we
will apply the HOMI framework to other interactive systems where
well-established performance or cognitive models exist. Promis-
ing examples include menu optimization, gaze-based interfaces,
gesture input, and general scenarios where task-specific models



CHI *26, April 13-17, 2026, Barcelona, Spain

can be leveraged to generate meaningful synthetic users and en-
able pretraining. We can then further validate the flexibility of our
approach and demonstrate its potential as a general solution for
scalable, adaptive interface optimization.

Utilizing advanced models to generate synthetic users. HOMI is
grounded in the use of parameterized user models to simulate syn-
thetic users and enable large-scale pretraining. While this provides
a scalable and principled way to approximate diverse user behav-
iors, it requires established models for a given interaction task.
Such models might not be available for more complex interactions
that involve rich cognitive processes, sequential decision-making,
or dexterous motions. Here, we see an opportunity for the use of
more advanced modeling approaches that have recently emerged
in HCL Specifically, advances in Computational Rationality and
reinforcement learning—based modeling of cognitive and motor
processes [43, 61, 64] offer promising alternatives for simulating
realistic human behavior in such scenarios. When combined with
biomechanical models that provide realistic musculoskeletal dy-
namics [19, 23, 23, 47, 59, 59], this approach offers a powerful path
toward general-purpose human simulators. Unlike traditional ana-
lytical models that are tied to specific tasks, these reinforcement
learning-based models can learn to reproduce a range of sensorimo-
tor behaviors through learning. This opens the door to synthetic
users that can generalize across tasks, contexts, and devices, fur-
ther broadening the applicability of HOMIL Additionally, generative
models, such as variational autoencoders, diffusion models, or large
language models, are increasingly used to model human-like behav-
ior from data, and could be adapted to synthesize user interaction
patterns in tasks where explicit models are lacking [37, 66]. Future
work could incorporate these approaches to expand the scope of
HOMLI, or explore hybrid user simulation strategies that blend ana-
lytical models with data-driven user representations. These direc-
tions can significantly broaden the applicability of our framework
across a wider spectrum of HCI domains.

Generalization beyond synthetic users. Although our novelty de-
tector provides a fallback mechanism for handling out-of-distribution
users, the overall performance of NAF™ still depends on how well
the synthetic user distribution approximates real-world variability.
Moreover, the sampling of synthetic users presents an inherent
trade-off. Sampling a broad and diverse range of synthetic users
allows NAF" to learn generalizable strategies across many user
profiles, but this may come at the cost of reduced performance
for any specific user. In contrast, sampling from a narrow range
enables the optimizer to acquire more specialized strategies tailored
to users that are more aligned with the synthetic ones, but at the
risk of having a higher chance to encounter users outside of the
training distribution. Balancing this exploration-exploitation trade-
off in user simulation is a key open question. Future directions
may include adaptive sampling, curriculum-based simulation, or
progressive refinement of the synthetic user population based on
deployment feedback. Such approaches could further enhance the
generalization capacity of NAF' in real-world human-in-the-loop
scenarios.
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Development of other HOMI methods. While this paper presents
NAF? as one realization of the broader HOMI framework, the frame-
work itself is general and can support many alternative instantia-
tions. One especially promising direction is to incorporate online
user data into the meta-learning loop; that is, incorporating contin-
ual HILO [46] into our workflow. Currently, the meta-optimizer is
trained exclusively on synthetic users generated from established
models. However, as real user interaction data accumulates over
time, integrating this data into the training process could allow the
optimizer to continuously improve and better adapt to emerging
usage patterns and behaviors. Such lifelong learning mechanisms
would allow HOMI-based systems to evolve beyond their initial
modeling assumptions and progressively refine their understanding
of user diversity. Future HOMI methods could also explore alterna-
tive optimization strategies, such as moving beyond weighted-sum
aggregation in multi-objective optimization and explicitly model
Pareto frontiers, allowing users or systems to select among optimal
trade-offs post hoc [24]. Further, future research could investigate
alternative acquisition architectures, such as transformer-based
models or hybrid schemes that combine learned and analytical ac-
quisition components. These extensions would further enhance the
flexibility and impact of HOMI across a broader range of real-world
HCI scenarios.

7 Conclusion

We introduce HOMI, a novel framework for HILO that leverages
model-informed pre-training to accelerate real-time interface adap-
tation. By synthesizing large populations of simulated users from
user models, HOMI enables the training of powerful optimizers
prior to deployment, bridging the gap between traditional model-
based design and purely interactive approaches. To demonstrate
the framework, we proposed NAF*, a concrete method that inte-
grates a deep reinforcement learning—based acquisition function,
dynamic multi-objective adaptation, and a novelty-aware fallback
mechanism. Together, these components enable efficient and ro-
bust optimization across diverse users and changing objectives. Our
results suggest that this new concept and approach jointly offer
a scalable and generalizable path for future personalization sys-
tems: one that moves beyond per-user modeling and instead learns
population-level adaptation strategies that generalize in deploy-
ment. We believe this work opens up a new direction for optimiza-
tion in HCI, one that treats user models not just as analytical tools,
but as generative engines for training adaptive, intelligent design
systems. Finally, we hope this work provides a new lens for bridging
in vitro (in simulation) with in situ (with real users) optimization,
enabling more streamlined and adaptive future interfaces.

8 Open Science

NAF" is released at https://github.com/yichiliao/homi. We hope
that our implementation can encourage other researchers to build
other applications based on our proposed workflow and approach.
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A Appendix: Overview of Simulated Tests

In this appendix, we describe the synthetic experiments conducted
to validate the effectiveness of NAF*. These experiments are de-
signed to address the following three goals:

e Goal 1: Compare performance against baselines. We
benchmark NAF* against two established HCI optimization
approaches: standard Bayesian Optimization (BO) and Trans-
fer Acquisition Function (TAF).

e Goal 2: Validate dynamic objective weighting. A key
feature of NAF™ is its ability to adapt to varying weights
across multiple design objectives during deployment. We
test this capability under shifting weight settings.

¢ Goal 3: Evaluate robustness to novel users. Another
contribution of NAF* is its mechanism for handling out-of-
distribution users through a novelty-aware fallback strategy.
We examine its efficacy in these scenarios.

To evaluate these goals, we conduct two synthetic tests. The
first is a standard black-box optimization problem (Sphere func-
tion), commonly used for evaluating BO methods. The second is
a semi-realistic simulation designed to mirror our target use case:
optimizing mid-air keyboards for users with diverse performance
profiles. In this simulation, we generate synthetic users with vary-
ing typing behaviors and aim to optimize keyboard layouts per
individual.

A.1 Optimization Approaches (Conditions)

We define a set of optimization approaches, or “conditions,” which
are held consistent across both synthetic tests.

1. NAF*(full). This is the complete version of our proposed
method, featuring both: (1) dynamic handling of multi-objective
weights through explicit input, and (2) fallback support for novel
users via the combination of EI and a novelty detector.

2. NAF' without explicit multi-objective input. This variant of
NAF" is trained to handle different objective weightings but does
not receive explicit weight vectors as input during training or de-
ployment. This tests the importance of conditioning the policy
directly on objective weights.

3. NAF" without novel user fallback. This version excludes the
components responsible for handling novel users (i.e., no EI fallback
and novelty detection). It relies solely on the neural acquisition
function (naf) trained on synthetic users.

4. Standard BO. This is the typical Bayesian Optimization setup,
using Gaussian Processes and Expected Improvement as the acqui-
sition function. It does not utilize any pretraining or meta-learning.
This condition serves as a standard baseline in HCI for human-in-
the-loop optimization.

5. Transfer Acquisition Function (TAF). TAF is a meta-learning
approach widely used in prior HCI work [41, 85]. It builds a library
of prior user models, each is as a standalone Gaussian Process (GP)
trained on that user’s optimization data. During deployment, all
prior models independently generate acquisition values for the
candidate designs, and these values are aggregated—typically via
a weighted sum—to guide the optimization for a new user. A key
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distinction between TAF and all variants of NAF" lies in scalability.
While TAF relies on a fixed set of prior users and its computational
cost increases linearly with the size of the prior model library,
NAF? is trained on an arbitrarily large population of synthetic
users but retains constant complexity. This enables NAF* to scale
more efficiently with increasing amounts of data.

Note that we did not include the vanilla NAF as a separate con-
dition because it essentially operates as our NAF* without both the
explicit multi-objective input and the novel user fallback mecha-
nism. The differences between NAF* and NAF are already captured
in the comparisons between Condition 1 vs Conditions 2 and 3.

A.2 Generating a Group of Synthetic Users

We follow standard procedures for evaluating meta-learning and
transfer optimization methods [41, 81, 85], simulating a population
of synthetic users who share core behavioral structure but exhibit
individual variability. Each synthetic user is represented as a unique
function, derived by modifying a shared base function through
controlled transformations. We refer to these personalized variants
as user functions. These are divided into a training group (used
to train the meta-optimizer) and a test group (used to evaluate
generalization at deployment).

For the first test, we determine a base function using a com-
mon test function for optimization tasks. Then, each user func-
tion is created by shifting the function (translating the input val-
ues before passing them to the function). The magnitude of the
shifts is uniformly sampled from a distribution within a speci-
fied range, adding diversity among the users. Mathematically, the
shift is represented as x;, = x, + 0p, where x5, is the original in-
put, x;, is the shifted input, n € [1, N] represents the parame-
- U(_shiftarange’ shiftarange)‘ This

ters, and the shift amount 6y,
step simulates different user responses to the same design. We
also scale the output of the function by a scalar factor, which is
also sampled from a uniform distribution. This factor, denoted as
S~U(1- Scale‘zmng €1 Scale‘zmng ¢), introduces further diversity
in users’ performance level. Through the combinations of these
randomly sampled shift and scale, we generate a diverse set of user
functions that preserve the structure of the base function while
simulating realistic inter-user differences.

For the second test, we employ a user model based on existing
literature, which has 6 user parameters. We sampled the parameter
values from the range provided by the existing literature; a unique
parameter assignment represents a specific user with a specific user
performance given a design. More details will be provided in the
second synthetic test (Appendix C).

A.3 General Procedures in the Synthetic Tests

Our synthetic tests follow a consistent structure consisting of three
stages: training, testing, and evaluation on novel users.

Step 1: Training. We first train all NAF* variations and TAF using
a collection of prior user functions. For TAF, the training process
involves fully optimizing each prior user function to build a set
of GP models—one per user. To enable TAF to handle dynamic
objective weights, we follow a prior approach [41] where multi-
objective optimization is performed during training. This results
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in GP models that can predict multiple objective values, allowing
the optimizer to accommodate dynamic weight assignments during
deployment. We train TAF with 15 prior user functions, which
is consistent with earlier studies. Increasing the number of users
further leads to prohibitively long computation times at deployment,
as TAF’s runtime scales linearly with the number of stored models.

For all NAF* variants, we dynamically generate synthetic users
and continue training until a fixed number of training steps is
reached (80000 steps for both synthetic tests). The three NAF* vari-
ants share the same training procedure, with the only difference
being that Condition 2 (NAF" without explicit multi-objective in-
put) is trained on multiple objective weight configurations but does
not receive the weight information as part of the model input. Ad-
ditionally, all collected (x, y) pairs during training are used to train
the Bayesian Neural Network-based novelty detector. Notably, the
novelty detector is trained with the objective weights as part of
the input, enabling it to condition its uncertainty estimation ac-
cordingly. However, Condition 3 (NAF" without novelty detection)
does not include this module and skips this training step.

Step 2: Testing. Next, we sample 20 test functions, each represent-
ing a new synthetic user with distinct characteristics. For each test
function, the objective weights are randomly sampled from a uni-
form distribution. These functions are also shifted and scaled as de-
scribed earlier to ensure diversity. Each condition is then deployed
independently on these test functions to evaluate its performance
with a budget of 20 iterations.

Step 3: Testing on Novel Users. To evaluate the robustness of each
condition under distributional shift, we construct a separate set of
“novel” user functions. These are generated using parameter values
that lie completely outside the range observed during training. All
optimization conditions are then tested on these novel users to
assess their ability to generalize to unseen behaviors.

B Synthetic Test 1: Double-Sphere Functions

In this synthetic test, we define a composite 2D objective function to
evaluate the optimizer’s ability to handle dynamic objective trade-
offs as well as coping with novel users. Specifically, two sub-tests
are conducted to evaluate two aspects of NAF'. The first sub-test
(denoted as test 1.1) evaluates the importance of weight informa-
tion, and the second sub-test (test 1.2) validates the importance of
incorporating the typical expected improvement acquisition funci-
ton.

B.1 Function Details

The function has two input parameters and two output objectives,
each modeled as a 2D Sphere function centered at different locations.
Specifically, the first Sphere function is centered at (0.4, 0.4), while
the second is centered at (0.6, 0.6). Each Sphere function is defined
asy=1- le:l (% — X;)? X y, where X; is the center coordinate
and y = 8 controls the sharpness of the peak.

The final objective value is computed as the weighted sum of
these two Sphere functions, with weights dynamically assigned
during deployment. This creates a setting where the global opti-
mum shifts depending on the weight configuration: when the first
objective is prioritized, the optimal region lies near (0.4, 0.4); when
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the second is prioritized, it shifts toward (0.6, 0.6). To simulate user
variability, we directly apply random shifts to the input space x in
both dimensions, as well as scaling to the final weighted-sum output
of the two sub-functions. Specifically, each synthetic user is defined
by a unique shift vector and scaling factor, applied consistently
across both objective components. This formulation introduces
variation in both user preference (by altering the location of op-
tima) and sensitivity (by modulating the steepness of the reward
surface), while preserving the underlying structure of the task.

B.2 Configurations of each Condition

Here, we detailed the configurations of different conditions.

1. NAFY. We set the naf as a six-layer fully connected neural
network, with each hidden layer containing 256 nodes and Tanh as
the activation function. The naf is trained using Proximal Policy
Optimization (PPO) [73], where the critic network shares the same
architecture as the actor (i.e., naf). The actor and critic learning
rates are set to 0.0003 and 0.001, respectively. PPO is run for K = 10
epochs with a clipping parameter of 0.15. To encourage generaliza-
tion across varying objective weightings, the objective weights are
randomly sampled during training. To be more specific, the weight
on the first Sphere function, «, is drawn uniformly from [0, 1], and
the weight on the second is set to 1 — a. This two-dimensional
weight vector (a, 1 — «) is also included as part of the input to the
naf, allowing the acquisition function to adapt its strategy based on
the current configuration. Note, when deploying on the test func-
tions, the weights are given to NAF" as a part of the input. Finally,
the pre-defined novelty threshold 7 is set to be 0.1. We denote this
method as NAF? in the rest of this test.

2. NAF" without weights information (NAF-w/o-Weight). This
condition is very similar to the full version of NAF*. The model
setting, hyperparameter used in training, and training procedure
are identical to NAF'. The only difference is that this method is
not informed by the information of the objective weights.

3. NAF* without EI (NAF-w/o-EI). This condition is very similar
to the full version of NAF*. The only difference is that there is no
additional GPs constructed for the new function, and thus, there is
no EI or novelty detector. The process is fully dominated by NAF
all the time.

4. Transfer Acquisition Function (TAF). This condition is Transfer
Acquisition Function (denoted as TAF). This approach is a weighted-
sum method; a series of GP models will be created and stored prior
to deployment. We follow the previous works ([41]) to configure
TAF; 15 prior GPs are gathered, each is trained from a randomly
sampled double-Sphere function, with the objective weights also
randomly sampled. These GPs are constructed via standard BO,
with 10 initial random sampling with 15 optimization steps. Similar
to Liao et al. [41], we configure TAF with decaying model weights
on the previous GPs, which allows the new GP model to gradually
gain control over the optimization process. Specifically, o is set as
4 and a3 is set as 0.2.
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5. Standard Bayesian optimization (BO). The final condition is
standard Bayesian optimization (BO). We used Expected Improve-
ment as the acquisition function and a typical Single-Task GP im-
plemented in the BoTorch library as the surrogate model*. We set
BO with 6 random explorations followed by 14 optimization steps.

B.3 Result of Test 1.1 (Evaluating Weight
Information)

Test 1.1 is designed to specifically evaluate the value of weight in-
formation. To this end, we sampled 20 test functions from the exact
same range as the one used for training. Since the test functions
are fully overlap with the training range, we exclude the condition
with novel detection and additional EI (NAF-w/o-EI) from this test
The log regret results are presented in Figure 8 left panel. Overall,
we can observe that NAF* started from an overall better perfor-
mance and constantly outperformed other meta-BO approaches,
such as NAF-w/o-Weight and TAF. Also, while TAF showed promis-
ing performance (most regret is less than 1071), it still performed
worse than NAF" and NAF-w/o-Weight. The primary reason is
that NAF* is trained by a nearly unlimited number of synthetic
agents, allowing it to fully generalize across new tasks. On the
other hand, TAF is based on a limited set of prior synthetic users.
In addition, within the first 10 iterations, all meta-BO approaches
demonstrated better performance than standard BO, which starts
from scratch. This highlights the benefit of prior experience. To
further analyze the benefit of incorporating the weight information,
we run independent-samples t-tests to specifically compare the
resulting performance of NAF* and NAF-w/o-Weight at each itera-
tion. We found significant differences in iteration 5-20, all p < 0.05,
confirming that NAF overall outperforms NAF-w/o-Weight.

B.4 Result of Test 1.2 (Evaluating Expected
Improvement)

Test 1.2 evaluates the benefits of incorporating EI and a novelty
detector to handle out-of-distribution cases. This time, we sampled
20 test functions outside the training range, which is a possible case
in a real-world scenario where real users may not be fully aligned
with our models. To that end, we directly shifted the center of the
two Sphere functions from (0.4, 0.4) and (0.6, 0.6) to (0.3,0.3) and
(0.7,0.7). This ensures the sampled functions will be different from
the training functions, but not too distant. We include the condition
with novel detection and additional EI (NAF-w/o-EI) from this test,
but exclude the condition of weight information (NAF-w/o-Weight)
since it is not a part of the main comparison. The log regret results
are presented in Figure 8, right. Without incorporating EI based
on the newly constructed GP, the performance of NAF did not
make significant improvements throughout the iterations. This is
expected, as the test functions are out of the training distribution.
On the other hand, NAF* did not start with a good performance
due to the out-of-distribution test case. However, its performance
gradually catches up with the other baselines, demonstrating the
necessity of incorporating EI in real-world scenarios.

“https://botorch.org/
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B.5 Summary of test 1

Test 1.1 answered goal 1 (comparing performance against base-
lines): we observe NAF* and NAF-w/o-Weight generally outper-
formed TAF owing to its rich training data. NAF* and NAF-w/o-
Weight also significantly outperformed Standard BO in the first
few iterations. Test 1.1 also answered goal 2 (validating dynamic
objective weight): we found that overall, NAF* converges faster
than NAF-w/o-Weight, owing to its capability to take objective
weight as input and adjust its search policy. Test 1.2 responded to
goal 3 (evaluating robustness to novel users): we showed that
when facing out-of-distribution users, the novelty detection with
additional EI ensures robust convergence. Meanwhile, NAF-w/o-EI
can not effectively address such scenarios.

C Synthetic test 2: Simulating softkeyboard
typing

In the second synthetic test, we develop a typing user model that
closely mirrors the target behavior of our real user study. This model
predicts user performance on a given keyboard design, enabling
us to evaluate design quality by simulating the act of typing a
sentence on the sampled keyboard. As in the previous test, we
conduct two sub-tests: one to assess the importance of including
weight information as part of the model input, and another to
evaluate the benefit of incorporating Expected Improvement (EI).

C.1 Model Details and Generating Synthetic
Users

In this test, a keyboard design is defined by its spatial dimensions,
including height and width. The user model predicts two key per-
formance metrics: (1) typing error, defined as the probability of
pressing an incorrect key, and (2) movement time between con-
secutive key presses. The model is composed of two analytical
components: Fitts’ Law [51] for modeling movement time, and the
Dual Gaussian Distribution (DGD) model [11] for predicting touch
error on touchscreen keyboards. Further implementation details
are provided in Section 5 of the main paper.

To generate synthetic users, we assign values to the model pa-
rameters [a, b, ax, 0q,, ay, O y] by sampling from distributions in-
formed by prior work. Bi et al. [9] report Fitts’ Law parameters
fitted to touchscreen typing as a = 144.3 and b = 75.636, with the
unit being milliseconds. We use these values as the means of two
independent Gaussian distributions (each with a standard devia-
tion of 15) and sample from them to generate user-specific values
of a and b. Here, we emphasize that this is a synthetic task; the
exact parameter values vary for different input modalities and key-
board settings, and here we only take the available model values to
demonstrate the efficacy of our approach.

For the touch error model, we adopt the generic parameterization
from the DGD model [11], setting the means of the Gaussian distri-
butions to ax = 0.0075, 04, = 1.296, ay = 0.0108, and Oa, = 1.153.
The corresponding standard deviations are arbitrarily set to 0.001,
0.01, 0.001, and 0.01, respectively. Each parameter is sampled inde-
pendently, resulting in a diverse population of synthetic users with
varying motor behavior and touch precision profiles.
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Figure 8: The results of Test 1 (double-sphere functions): Test 1.1 (evaluating weight information) is shown in left, and Test
1.2 (evaluating expected improvement) is shown in right. The value plot here is the log; of the regret. In Test 1.1, the * signs
denote the iterations (5-20) where a significant difference between NAF+ and NAF-w/o-Weight was found. The results show
that NAF* benefits from the weight information and thus can achieve better performance than NAF-w/o-Weight by a more
informed optimization strategy. Meanwhile, the novelty detector allows NAF" to rely on its GP and EI to address tasks that are
outside of the training distribution, whereas NAF-w/o-EI can not adapt to novel tasks.

C.2 Configurations of each Condition

All the conditions remain the same as in the previous synthetic test
(subsection B.2).

C.3 Result of Test 2.1 (Evaluating Weight
Information)

Similar to the previous test, Test 2.1 is designed to evaluate the
value of the weight information. We sampled 20 test functions from
the exact same range as the one used for training. We again exclude
the condition with novel detection (NAF-w/o-Weight) from this test
as there will not be novel functions. The log regret results are pre-
sented in Figure 9, left panel. NAF* and NAF-w/o-Weight start from
an overall better performance than the others. Especially, NAF*
converges to optimal performance around the second iteration, and
NAF-w/o-Weight converges around the fifth iteration, showing
NAF? still benefits from the additional weight information as a part
of the input. We observed that TAF with 15 prior models struggled
to improve significantly in this case. This might be because of the
higher number of parameters (2 in Test 1 and 6 in Test 2). To cover
this number of dimensions, potentially more models will be re-
quired. Furthermore, same as the previous test, Standard BO starts
from a worse performance and gradually converges toward optimal
performance. Finally, to further analyze the benefit of incorporat-
ing the weight information, we run independent-samples t-tests to
specifically compare the resulting performance of NAF* and NAF-
w/o-Weight at all iterations. We found significant differences in
iterations 1-4, all p < 0.05. This shows that the weight information
supports more efficient adaptation in the earlier iterations.

C.4 Result of Test 2.2 (Evaluating Expected
Improvement)

Test 2.2 evaluates the value of merging EI and the novelty detector.
To create a scenario where the new user is completely outside of
the training range, we significantly shift the range of sampling the
model parameters. The mean for sampling synthetic users are set
as [180, 120, 0.0145,1.6,0.03, 2.0] for [a, b, ay, Oa,, Ay, O'ay], respec-
tively, and the standard deviation remains the same. These ranges
are significantly different from the parameter settings for training,
ensuring all sampled users are novel. We sampled 20 test functions
from the test range. The log regret results are presented in Figure 9,
right panel. We find that NAF* and NAF-w/o-EI start from overall
better performance, but NAF-w/o-EI does not improve significantly
throughout the iterations, while NAF* continually improves. This,
again, highlights the potential issue of not incorporating an addi-
tional EI to handle out-of-distribution cases: naf can not generalize
to other cases once it is fully trained to a certain range. TAF and
standard BO perform well in this task. However, they start from
a worse performance. BO, especially, requires 4 to 5 iterations to
catch up with other conditions.

C.5 Summary of Test 2

Test 2.1 addresses goal 1 (comparing performance against base-
lines). We observe that NAF* and NAF-w/o-Weight consistently
outperform TAF, likely due to the higher dimensionality of the in-
put space in this test. TAF, relying on a limited set of prior models,
would require a larger number of samples to adequately cover the ex-
panded design space. NAF* and NAF-w/o-Weight also significantly
outperform standard BO in the early iterations, demonstrating the
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benefits of leveraging prior knowledge. Test 2.1 also supports goal
2 (validating dynamic objective weighting). Compared to NAF-
w/o-Weight, NAF* achieves faster convergence by conditioning its
acquisition strategy on the provided objective weights, resulting
in higher sample efficiency. Test 2.2 addresses goal 3 (evaluating
robustness to novel users). We find that NAF-w/o-EI struggles to
adapt when users fall outside the training distribution, while NAF*
—equipped with a novelty-aware EI fallback—successfully recovers
and improves performance over time.

Liao et al.

In summary, both Test 1 (a controlled synthetic benchmark) and
Test 2 (a more realistic simulation grounded in HCI literature) con-
verge on the same conclusion: NAF*, through its use of explicit
weight input and novelty-aware EI, achieves greater sample effi-
ciency and robustness across a wide range of user profiles. The
positive outcomes of Test 2 further motivate our user study, which
targets typing performance on mid-air keyboards, highly relevant
to Test 2 — a touch-based keyboard for mobile devices.
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Figure 9: The results of Test 2 (simulating softkeyboard typing): Test 2.1 (evaluating weight information) is shown in left, and
Test 2.2 (evaluating expected improvement) is shown in right. The value plot here is the log; of the regret. In Test 2.1, the *
signs denote the iterations (1-4) where a significant difference between NAF+ and NAF-w/o-Weight was found. The results show
that NAF* benefits from the weight information and thus can achieve better performance than NAF-w/o-Weight in earlier
iterations. On the other hand, NAF* can achieve better results compared to NAF-w/o-EI when facing novel tasks, particularly
in later iterations.
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