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Abstract 
Supernumerary robotic limbs are robotic structures inte-
grated closely with the user’s body, which augment human 
physical capabilities and necessitate seamless, naturalistic 
human-machine interaction. For efective assistance in phys-
ical tasks, enabling SRLs to hand over objects to humans is 
crucial. Yet, designing heuristic-based policies for robots is 
time-consuming, difcult to generalize across tasks, and re-
sults in less human-like motion. When trained with proper 
datasets, generative models are powerful alternatives for cre-
ating naturalistic handover motions. We introduce 3HANDS, 
a novel dataset of object handover interactions between a 
participant performing a daily activity and another partici-
pant enacting a hip-mounted SRL in a naturalistic manner. 
3HANDS captures the unique characteristics of SRL interac-
tions: operating in intimate personal space with asymmetric 
object origins, implicit motion synchronization, and the 
user’s engagement in a primary task during the handover. 
To demonstrate the efectiveness of our dataset, we present 
three models: one that generates naturalistic handover tra-
jectories, another that determines the appropriate handover 
endpoints, and a third that predicts the moment to initiate a 
handover. In a user study (N=10), we compare the handover 
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interaction performed with our method compared to a base-
line. The fndings show that our method was perceived as 
signifcantly more natural, less physically demanding, and 
more comfortable. 

CCS Concepts 
• Human-centered computing → User centered de-
sign; Gestural input; • Computing methodologies → 
Robotic planning; Spatial and physical reasoning. 

Keywords 
supernumerary robotic limb, wearable robotic arm, third 
arm, handover, dataset, motion synthesis, generative model, 
data-driven control in robotics 

ACM Reference Format: 
Artin Saberpour Abadian, Yi-Chi Liao, Ata Otaran, Rishabh Dabral, 
Marie Muehlhaus, Christian Theobalt, Martin Schmitz, and Jürgen 
Steimle. 2025. 3HANDS Dataset: Learning from Humans for Gener-
ating Naturalistic Handovers with Supernumerary Robotic Limbs. 
In CHI Conference on Human Factors in Computing Systems (CHI 
’25), April 26–May 01, 2025, Yokohama, Japan. ACM, New York, NY, 
USA, 19 pages. https://doi.org/10.1145/3706598.3713306 

1 Introduction 
Supernumerary robotic limbs (SRLs) hold great promise in 
supporting humans in diverse activities by seamlessly in-
tegrating human bodies with assistive motion. Frequently 
investigated applications include physical activities where 
an additional hand is needed [16], physical assistance for the 
elderly [59], augmenting humans with "superpowers" [78], 
or assistance for strenuous physical tasks [29, 50, 62, 76]. 
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Figure 1: The 3HANDS dataset comprises an extensive collection of human motion data of asymmetric object 
handovers between users and a human-enacted third arm, which assists an ongoing activity by handing in or 
taking away objects at an intimate distance to the user. It contains recordings of 946 interactions captured with 12 
participant pairings while performing 12 daily activities. The dataset comprises rigged skeleton data of full body 
(69 joints) and hands (21 joints). We demonstrate the dataset’s utility to train state-of-the-art machine learning 
models for three essential steps in the handover activity: generating naturalistic handover trajectories, predicting 
the location of the handover, and identifying the intent to initialize a handover. 

Prior works also found SRL’s wide-range applications in the 
Human-Computer Interaction (HCI) feld, such as holding 
support, ofering additional control [44], providing rich hap-
tic feedback [35], and complex human-robot collaboration 
[77]. In all these cases, handing over objects between human 
hands and the robotic limb is a frequent activity. 

Given that SRLs are human-machine interfaces that oper-
ate within personal and often even intimate distance to the 
user [21, 41], their motion control demands are particularly 
stringent to ensure interactions that are predictable, safe, 
and efective. One might intuitively attempt to design han-
dover motions for SRLs based on heuristics; however, this 
approach is a tedious control and programming task [52]. It 
also can easily fail to account for the subtleties of natural 
human interaction, including naturalistic patterns of motion 
kinematics acceptable in intimate personal space, efective 
inter-hand motion coordination, and subtle cues that convey 
handover intention. Modern generative machine learning 
techniques ofer a promising alternative, allowing us to de-
velop data-driven models capable of generating natural and 
safe motions for user interaction [60, 61]. Achieving this 
goal hinges on the availability of appropriate datasets for 
training these models. 

Several handover datasets currently exist. For instance, 
the H2O dataset [89] captures the hand postures at a short 
distance of both the giver and the receiver in front of each 
other, whereas the HOH dataset captures whole-body mo-
tions as two users sit face-to-face [83]. Others captured 
bimanual handover motions [36]. While these datasets pro-
vide valuable insights into handover motions, they do not 
account for the diferences in interactions and motion kine-
matics arising from operating in the user’s personal space. 

Prior datasets studied face-to-face handovers with symmet-
ric roles initiated based on clear temporal cues and without 
another primary activity. In contrast, the handover with an 
SRL is characterized by (1) asymmetric spatial confguration 
centered on the user’s body, (2) asymmetric roles of SRL 
(assistant) and user (master), (3) ongoing primary activity of 
the user, potentially infuencing timing and location of han-
dover, and (4) implicit initiation of handover based on the 
user’s implicit postural cues. These substantial diferences 
demand a novel dataset that addresses these critical fac-
tors, which can then be used to train models for generating 
naturalistic SRL motions. 

This paper contributes 3HANDS, a human-human ob-
ject handover dataset specifcally developed to help design 
the interactive behavior of hip-mounted supernumerary 
robotic limbs. It captures interacting pairs of humans (see 
Figure 1). One person is performing 12 diferent daily ac-
tivities, sampled from activities at the torso and above the 
shoulders, close or far from the body, and with a small to 
large range of motion, aiming to cover a broad spectrum of 
human motion dynamics. Examples range from shampoo-
ing hair and hammering to painting the wall and cleaning 
a window. Concurrently, a second person acted as the SRL 
and was instructed to hand over and take back a spherical 
object to the frst person in a natural manner, taking a posi-
tion and posture representative of a hip-mounted SRL. We 
opted for a hip-mounted confguration, as it is a common 
SRL mounting location (e.g., [59, 64, 80]), more stable for 
mechanical movements [80], minimizes interference with 
the user’s natural arm workspace, and enhances safety by 
distancing the SRL from sensitive areas (like the head and 
face). We captured 946 interactions performed by 12 unique 
pairings of participants. The dataset was captured using 
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a markerless motion-capture setup, with 41 synchronized 
2K camera views. Markerless capture is considerably less 
invasive than the marker-based setups used in many prior 
studies and ensured that participants could move freely and 
naturally to perform the desired tasks without restraining 
their motions. The dataset contains detailed skeleton data 
of 69 joints with 107 Degrees of Freedom (DoF), includ-
ing the detailed capture of hand articulation with 21 joints 
per hand. We recorded the participants’ rigged 3D skele-
tons, hand poses, time-synchronized textual transcriptions 
of verbal utterances, information on whether a handover 
is occurring and the transcription of the verbal communi-
cation between participants with the time stamps for each 
interaction. Our dataset has four key characteristics that 
distinguish it from prior datasets and make it particularly 
proper for training SRLs: Contrasting with prior datasets 
that captured face-to-face handover with a clear handover 
temporal cue [83, 89], our dataset has the following features 
that made it particularly proper for training SRLs: (1) Instead 
of face-to-face motions, handovers occur in an asymmet-
ric spatial confguration and in intimate distance to the user, 
where the objects are asymmetrically delivered from the 
sides of the primary user. (2) Participants take on asymmetric 
roles: primary user vs. robotic assistant. (3) The primary user 
performs an ongoing primary activity. (4) We opted against 
a specifc cue after which both participants should initiate 
the motion immediately; instead, we precisely capture how 
participants implicitly coordinate the start of a handover. 
This rich multi-modal dataset ofers a valuable resource for 
the HCI community to investigate the complex interplay 
between human motion and verbal communication during 
handovers, ultimately informing the design of more intu-
itive and user-friendly SRL interfaces in particular and of 
human-robot interfaces in general. We share the dataset 
with the community1. 

To further demonstrate practical applications of our dataset 
in training models for interaction with SRLs, we trained 
three distinct models using conditional variational autoen-
coder (CVAE) [69] and neural network architectures. Each 
of them addresses one essential step in the handover activity. 
First, we developed a trajectory generation model capable 
of generating naturalistic handover motions for SRLs in re-
sponse to the primary user’s actions. Second, we contribute 
a model to anticipate the desired location where the han-
dover will most likely occur for a given posture. Finally, 
we show that our dataset facilitates the training of a model 
that accurately predicts when the SRL should initiate a han-
dover solely based on implicit postural cues of the primary 
user. We detail on the data processing, models and exper-
imental results. The performance metrics achieved with 
our dataset confrm its quality and show its potential to 
both, advance the feld of SRLs and deepen the understand-
ing of handover activities in close personal space. Further-
more, we conducted a user study examining the subjective 
perceived quality of the generated handover motions (for 
measures such as perceived naturalness, smoothness, and 
predictability) compared to a baseline method in a virtual 
reality environment. The results of the study indicated that 

1https://hci.cs.uni-saarland.de/projects/3hands/ 

our models trained with 3HANDS result in more natural 
and smooth motions that are less physically demanding and 
more comfortable. We hope our dataset and experimental 
results will provide a valuable resource for future studies 
and applications. 

In summary, this paper contributes the following: 
• We introduce the 3HANDS dataset, an extensive col-
lection of motion patterns originating from two per-
sons engaging in an object handover. It captures 946 
asymmetric handover motions in scenarios where the 
user is performing a primary activity. It ofers a rich 
set of motion data, comprising rigged 3D skeletons 
and hand poses, transcriptions of verbal utterances, 
and information on whether a handover is occurring. 

• We illustrate the efectiveness of using the 3HANDS 
dataset to train models for handover interactions with 
supernumerary robotic limbs. These a) generate nat-
uralistic handover motion trajectories, b) predict the 
location of a handover, and c) accurately predict when 
to initiate a handover. 

• In a controlled user study in a virtual reality environ-
ment, we verify the naturalness of the handover inter-
actions produced with a data-driven method trained 
on the 3HANDS dataset. 

• We release the dataset to enable the community to 
create robust and reliable models of object handover 
with SRLs. 

2 Related Work 

2.1 Human-Human Handover 
In recent years, the study of human-human handover [7, 58, 
74] has gained attention due to its importance for improving 
human-robot interactions [19, 28] and collaborative systems 
[67, 70]. Past works have investigated a wide range of fac-
tors infuential to handover activities. These include the use 
of interpersonal space [22], timing [20], handover context 
[4]. They further addressed factors related to the handover 
objects, such as their physical properties [4, 9, 12, 23], associ-
ated gripping dynamics [53], and transfer control of the ob-
ject [74]. Other works have investigated giver and receivers’ 
motions [26] to communicate intent before handover [73], 
as well as social bonding and shared goals [84]. Building 
upon these rich insights, signifcant advancement has been 
made in data-driven control methods for human-robot han-
dover [3, 27, 32, 37, 85]. The data-driven approaches, which 
are trained on human-human handover data, have been 
shown to enable robots to better adapt to human behavior 
for smoother and more intuitive interactions [15, 68]. 

Several datasets have been developed to study human-
human handovers, each varying in terms of setup, modali-
ties, and object interactions. The HoH dataset [83] and the 
dataset by Khanna et al. [33] involve participants with a ta-
ble between them, either seated or standing. HoH provides 
point clouds, while Khanna et al. include motion tracking 
along with handover forces. The H2O dataset [89], and the 
datasets by Kshirsagar et al. [36] and Chan et al. [10] involve 
participants standing at a comfortable distance, with varia-
tions in their sensor setups: H2O employs magnetic sensors 
and cameras to focus on hand dynamics, while the others 

https://hci.cs.uni-saarland.de/projects/3hands
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utilize markered motion capture, RGB-D data, and multiple 
camera views. Carf et al. [8] provide a more dynamic sce-
nario, with participants freely moving toward each other in 
various handover contexts, incorporating multimodal data 
like motion capture, IMU, and videos. Lastly, Cini et al. [13] 
focus on grasps used during hand-object interactions. 

To the best of our knowledge, existing datasets for human-
to-human handovers are limited in that they focus on sym-
metric constellations where the giver and receiver face each 
other, and the handover occurs centrally in their shared 
interpersonal space. Furthermore, these datasets lack the 
implementation of an ongoing activity that is performed 
before and after the handover. To address these, we propose 
3HANDS that is focused on an asymmetrical giver-receiver 
relationship in close peripersonal space while the primary 
user is also engaged in an activity. A comparison of the 
datasets is presented in the Table 1. 

2.2 Human-Robot Handover Control 
Human-robot handover tasks combine anticipation of hu-
man intent with path-planning algorithms to generate feasi-
ble and natural handover trajectories. Generated trajectories 
optimize safety, reachability, and timing, to ensure smooth 
and collision-free handovers. Models on natural reaching 
movement, such as the minimal jerk model [25] have been 
used for anticipating handover timing and location [39, 45]. 
Elliptic trajectory modeling [68] was proposed for making 
early and fast predictions on the movement of the collabora-
tor and was shown to perform better than the minimal jerk 
model [11]. While classical modeling approaches provide 
fast computation times and hard constraints to ensure safety, 
they are prone to model inaccuracies and need more tuning 
efort from an experienced designer in custom scenarios. 

In addition, classical modeling approaches are not well-
suited to account for the subtleties and multimodality of 
naturalistic human interactions. Prior work on human-robot 
proxemics has highlighted the relevance of personal spatial 
zones for human-robot interaction [75, 81] and balanced 
physical distancing [6]. It has been shown that robots must 
follow societal norms of physical distancing to ofer smooth 
and comfortable, rather than disruptive and threatening 
interactions [57]. Spatial invasion, due to inappropriate dis-
tances between the robot and the human, can result in dis-
comfort and avoidance [42]. 

Data-driven or hybrid approaches are more capable of 
capturing subtle dynamics. The number of applications that 
rely on such methods is increasing as the availability of 
handover datasets improves. These approaches can be used 
to tune specifc model parameters [54], make real-time pre-
dictions [52, 88], or control the entire process using genera-
tive models [61]. In this paper, we show that our 3HANDS 
dataset provides high-quality and detailed human pose data 
to enable the training of generative handover control ar-
chitectures enabling naturalistic and fuid handovers with-
out basic heuristic constraints. Furthermore, our work con-
tributes to future analyses of personal space in human-robot 
interaction, an important area that is still in its infancy [41]. 

Handover control for supernumerary robotic limbs has re-
ceived signifcantly less attention than for stationary robots. 

Existing solutions either rely on human input by utilizing 
human redundant degrees of freedom [65] or use heuristic 
methods [16]. The lack of more data-driven approaches for 
wearable interfaces can be attributed to a lack of available 
datasets for training, imitating natural handover scenar-
ios with an agent that resides in the user’s personal space. 
We address this problem by contributing a comprehensive 
dataset focused on movement confgurations that are spe-
cifc to supernumerary robotic limbs. 

2.3 Supernumerary Robotic Limbs 
In recent years, wearable robotics have emerged as an ex-
panding topic of study. These include supernumerary robotic 
limbs that augment users by providing additional extra limb-
like robotic structures [86], prosthetics that replace missing 
body parts [30]; and exoskeletons that help to improve the 
physical performance of the user’s existing limbs [87]. 

Supernumerary robotic limbs have been extensively re-
searched, primarily in the robotics literature but also in-
creasingly in HCI. Numerous structural confgurations have 
been suggested by researchers for Supernumerary robotic 
limbs. For instance, prior work [79] proposed a forearm-
mounted supernumerary robot, dexterous torso-mounted 
robotic arms [66], a shoulder-mounted extra arm for above-
the-head work [48], or additional fnger-like structures [44]. 
A pliable snake-shaped wearable robot featuring 25 degrees 
of freedom has been developed for highly adaptable applica-
tion to the body in various geometric arrangements [1]. Var-
ious end-efectors are also suggested for SRLs [31]. Beyond 
physical assistance, SRLs are promising for virtual reality [5] 
and haptics, where wrist-worn [35] or waist-worn [2] robots 
can ofer rich haptic feedback on multiple body locations. 
Another line of work investigates the important challenge 
of how to adapt an SRL to individual bodies of users and 
to individual body locations [90]. Key directions include 
creating customized SRLs by assembling modular hardware 
building blocks [43] or using motion capture, digital de-
sign, and optimization algorithms to digitally customize a 
device design for computational manufacturing [64]. A cen-
tral question involves how to control the motion of SRLs. 
To manage the motion trajectories of the SRLs, researchers 
have investigated the interactions between the user and the 
device [56]. This is a hard challenge because, when oper-
ating an SRL, the user’s body is frequently occupied with 
a primary manual activity, restricting conventional touch 
or gesture-based interaction. One line of inquiry centers 
on robot planning, which employs activity recognition to 
autonomously steer the robot toward a goal that negates 
the need for direct human interaction [49]. Another line 
of inquiry uses remapping of body motion, where degrees 
of freedom in body movement that are not required for a 
specifc task are remapped to control the SRL. For instance, 
mapping a user’s foot movements to robotic arms can be 
a promising technique for intuitive and fexible real-time 
control [65]. Other approaches proposed using the back 
of the hand [40], the pinky fnger [46], or capturing mus-
cle movements with EMG [51] for controlling an SRL. Our 
work contributes to interactions with SRLs by proposing to 
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Dataset Cini [13] Chan [10] Carf [8] Kshirsagar [36] H2O [89] HOH [83] 3HANDS (ours) 
Human-human spatial zone - Social Social/public Personal/social - Personal/social Close intimate/intimate 
Activities ✗ ✗ ✗ ✗ ✗ ✗ 12 
Interactions 1734 1200 288 240 1200 2720 946 
Unique participant pairings 17 10 18 24 40 40 12 
Markerless ✗ ✗ ✗ ✗ ✗ ✓ ✓ 
Cameras 1 8 1 2 5 8 41 
Full body 3D skeleton ✗ ✗ 9 joints 13 joints ✗ ✗ 69 joints 
Hands 3D skeleton ✗ ✗ ✗ ✗ ✗ ✗ 21 joints per hand 
Objects 17 20 7 5 30 136 3 
Experimental Validation ✗ ✗ ✗ ✗ ✓ ✓ ✓ 

Setting - Standing, 
Freely moving 

Standing, 
Freely moving 

Standing, 
Face-to-face 

Standing, 
Face-to-face 

Seated, 
Face-to-face 

Standing-seated, 
Asymmetric 

Suitable for SRLs ✗ ✗ ✗ ✗ ✗ ✗ ✓ 

Table 1: Comparison of 3HANDS with prior human-human handover datasets. Human-human spatial zones are 
inferred based on Lambert’s defnition of spatial zones [38]. 

learn subtle and nuanced motion dynamics from pairs of 
interacting humans. 

3 Dataset 
In this section, we detail on the 3HANDS dataset, an ex-
tensive collection of motion patterns originating from two 
persons engaging in an object handover. It comprises de-
tailed motion data of more than 946 interactions where the 
primary person is performing 12 daily activities while the 
second person is enacting a hip-mounted third arm that 
hands over and takes back objects to assist the primary 
person during the daily activity. The decision to use a hip-
mounted SRL in 3HANDS is based on its popularity in re-
lated work and its ability to minimize interference with 
the user’s natural active space compared to other common 
SRL mounting locations. Additionally, it enhances safety by 
keeping the SRL away from sensitive areas such as the head 
and face. By recording interactions that were intuitively per-
formed by two interacting humans, the dataset captures the 
specifc and mostly implicit requirements of operating in in-
timate personal space as well as the interpersonal dynamics 
of object handover during a primary activity. 

3.1 Apparatus and Captured Motion Data 
We recorded the participants using the markerless optical 
motion capture system Captury2, which is based on the 
skeleton tracking approach of Stoll et al. [72] with additional 
hand tracking and a comparable average range of error of 
8.79 mm compared to the marker-based Vicon system (cf. 
[24]). The allocentric setup uses 41 time-synchronized RGB 
cameras mounted at the walls and ceiling, each recording 
at a resolution of 2056 × 1504 pixels with 25 Hz framer-
ate. This multiview motion capture efectively minimizes 
data loss caused by occlusions, as occluded joints are likely 
visible in other views. As extreme occlusions could cause 
challenges similar to marker-based systems, our manual 
verifcation confrmed the motion quality without any in-
stances of mistracked joints. They capture the motion of 
multiple persons simultaneously, in an area of 7 × 6 m. In a 
markerless motion-capture setup, the participants are not 
required to wear body suits or stick optical markers on their 

2https://captury.com 

bodies. This non-invasive capture setup allows the partici-
pants to freely and naturally perform the desired tasks with 
no restrictions on the kind of motions they can exhibit. Ad-
ditionally, the system also provides tracking of fnger joints, 
thereby allowing us to capture fne-grained handover. Not 
having markers facilitates better capture of such fnger artic-
ulations as it is typically difcult to attach and label markers 
on the fngers. 

The setup provides rigged skeleton data of both inter-
acting participants, including their hand poses (21 joints 
for each hand). As human joints have limits on the artic-
ulation angle and not all joints rotate along all three axes, 
the mocap system defnes the skeleton as a kinematic tree 
of 107 Degrees-of-Freedom (DoF). Each DoF represents the 
axis-aligned rotation of a joint along a specifc axis defned 
in the local coordinate system. The DoFs are also assigned 
individual limits on the maximum and the minimum artic-
ulation based on statistical data. These skeleton DoFs can 
be transformed into body joint rotations represented using 
Euler angles (or quaternion). Further, we perform a Forward 
Kinematics operation on the joint angles to recover the 3D 
positions of each body joint. In total, our skeleton defnition 
comprises 69 joints and 107 Degrees of Freedom (DoF). 

We also recorded the audio of the spoken instructions 
provided by the primary participant using an omnidirec-
tional neckband microphone attached to the participant. In 
order to synchronize the audio with the captured motion, 
we ask the participant to clap three times at the start and the 
end of the recording sequence. The peaks at the audio chan-
nel and clap moments of the hand joints are then aligned to 
achieve synchronization. 

3.2 Activities 
Since we aim to capture a broad spectrum of motion pat-
terns, we let participants perform 12 manual activities, rep-
resentative of everyday activities that frequently require 
object handovers. In order to select activities that represent 
a broad set of tasks, we systematically select such activities 
that provide a large coverage along the following param-
eters of motion patterns: 1) Height at which the action 
occurs relative to the user’s body; we include tasks at the 
level of the user’s torso and head. 2) Distance from the 
body: we vary activities carried out on-body (these require 

https://captury.com
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particularly careful motion to avoid uncomfortable or even 
hurtful encounters) and mid-air activities carried out at a 
certain distance in front of the body. 3) Motion range: we 
distinguish between small motion range, where hands stay 
largely at the same location for performing dexterous tasks 
(e.g., adjusting a small picture at the wall), medium range of 
motion (e.g., hammering a nail), and large range of motion 
(e.g., painting a large wall). 

Based on the parameters defned above, we select 12 
everyday manual activities that each cover a unique combi-
nation in this 2 × 2 × 3 parameter space. Table 2 depicts the 
set of activities. We provided the participants with authentic 
props for each task to enhance the realism of performing 
the activities. For instance, a hammer was provided for ham-
mering, a washcloth for washing the torso, etc. Additionally, 
we recorded a neutral pose where users were instructed to 
comfortably rest their arms while standing still. 

3.3 Task and Procedure 
3.3.1 Roles and Spatial Setup. One participant takes the 
role of the user (called the primary participant), and the 
other one acts as the serving robotic arm (called the robot 
participant). Pairs were instructed that the robot participant 
should aim at assisting the primary participant to the best 
level possible in handing over and taking objects, while the 
primary participant should focus on the primary activity and 
not care about the robot participant. Contrary to previously 
introduced handover datasets [8, 10, 13, 36, 83, 89], our par-
ticipant pairs do not face one another. Instead, we intention-
ally arranged the setup to resemble a hip-mounted SRL on 
the dominant hand’s side. Therefore, the robot participant 
was asked to sit on the dominant hand side of the primary 
participant where the shoulder of the robot participant is at 
the hip level of the primary participant, facing the primary 
participant’s hips at a slight distance (approx. 20cm), so as to 
not block the primary participant’s elbow while performing 
the activity. The primary participants were standing and 
wore glasses that shielded their peripheral view on the lower 
right. This shielded the robot participant’s face from their 
peripheral view, enabling them to focus on their activity and 
avoid communicating through eye contact. We illustrate the 
arrangement of the participants in Figure 2. 

The height of the stool for the robot participant is ad-
justed such that the robot participant’s shoulder is aligned 
with the height of the primary participant’s hip level. For 
the activities that required to be performed on a wall, we 
provided a wall-sized fxed acrylic panel in order to not 
block the camera views. 

3.3.2 Handover Task. The experimenter frst communicated 
the general instructions by playing a voice recording. After 
a short trial run, the pairs then performed the following 
handover task for each of the 13 activities (12 + 1 neutral 
pose, activities were performed in randomized order): After 
hearing a beep sound, the primary participant is performing 
the activity with the provided prop object, standing upright. 
The robot participant’s right arm is in a resting position 
(hanging down), holding the handover object. Next, the pri-
mary participant initiates a handover at any preferred time. 
The primary participant is free in the modality and way they 

Sample camera 
capture during studies 

Corresponding genera-
ted humanoid rig
 

Figure 2: Setup of the asymmetric handover task. Left: 
the primary participant was standing and performing 
the primary activity, while the second participant en-
acted a robotic arm for handing over an object. Right: 
we generate rigged skeletons of both humans, includ-
ing their articulated hands. 

would want to make the robot participant aware of their 
intention for handover. Then, the robot participant starts 
handing the object over to the primary participant and then 
goes back to the resting position. The participants were in-
structed to perform this motion in a way they considered 
natural. Once the object is handed over, the primary partici-
pant briefy mimics using the object. At any preferred time, 
the primary participant then signals the robot participant 
to take away the object. The robot participant’s right arm 
starts moving, takes the object, and returns to its resting 
position. 

Since we solely focus on the motion patterns and not on 
the specifcs of the grasp, we assigned a fxed handover ob-
ject per activity that is chosen among three spherical objects 
with diameters 2.5, 4, and 6cm, assigned with relevance to 
handover objects in the scenarios. 

3.3.3 Trials. The participants repeated the handover three 
times for each activity. After this process, the pair reversed 
roles and fully repeated it again, resulting in 156 trials (12+1 
activities x 2 hand-to/take-away x 3 repetitions x 2 reversed 
roles). In 16 instances, participants have performed 4 instead 
of 3 repetitions. Data from 7 trials had to be discarded due 
to the primary participant looking at the robot participant’s 
face or the robot participant’s right hand not waiting in the 
rest pose. In summary, the dataset contains 946 captured 
interactions. For one pair of participants (including reversed 
roles), the whole capturing session took approximately 90 
minutes. 
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Table 2: The set of activities captured in the dataset. Transparent acrylic sheets were used for the wall and the 
picture frame to avoid visual occlusions. 

3.4 Participants 
We recruited 12 participants (6 male, 6 female, 0 non-binary), 
aged between 21 and 33 years old. All participants reported 
being right-handed. They received a monetary compensa-
tion. Participants conducted the data capture in pairs and re-
versed roles to double the number of unique pairings. Since 
our setup requires operating in the intimate peripersonal 
space around the body, we opted for recruiting only couples 
who are in a stable relationship. To ensure that the arm’s 
length while sitting is sufcient to reach the location for 
object handover, we only included couples whose diference 
in height was not more than 20 cm. 

3.5 Data Processing 
The output of the preprocessed data is the motion data of 
the interacting participants. It includes the motion fles (in 
BVH and FBX format) together with time-synchronized raw 
video of all 41 cameras and the audio recording. 

We then manually annotated the Ground Truth (GT) 
by marking the frames that belong to a handover activ-
ity. We defne a handover activity to begin when the robot 
user starts moving; it ends when the robot user’s hand has 
returned to its resting position after the object has been 
handed over. Each handover frame is annotated with the 
correct label of the specifc handover task (give to or take 
away). In every frame of a handover, we furthermore labeled 
whether the object was in the primary participant’s hand 

or in the robot participant’s hand. The timestamp for every 
valid frame in its relevant handover segment is also added 
to the data (time data). This can be used later to provide tem-
poral information about the current status of the interaction 
with the model. 

For each frame of a handover, after marking the start and 
end times of the GT segments, we store the 3D rotations (in 
parent-relative coordinates) and calculate and restore the 
3D positions (in global coordinates) of each joint of both 
participants for all the valid frames within the sequence. We 
also include the stored rotation and position joint values in 
the dataset (CSV format). The 3D joints’ positions’ calcula-
tions are based on the root joint’s location and rotation (hip 
joint of each participant), following the skeletal hierarchy 
and using the local rotations and segment lengths specifed 
in the motion fles. We also provide the transcription of the 
associated audio fles including verbal commands and reac-
tions for handovers, as well as the annotation of the activity 
and handover tasks. It is worth noting that although we do 
not use the robot participants’ full-body motion informa-
tion in our experiments (Section 4), yet we release them as 
additional annotations for the community to work on. 

3.6 Data Analysis 
We conducted an initial analysis of the dataset to identify 
signifcant patterns in the motion data. The average duration 
of a handover across all activities was 2.244 ± 0.854 seconds. 
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Figure 3: Distribution of the locations where the object was handed over between participants. The points are 
presented in the user’s hips coordinate system. (left) shows the distribution from the top view (head at origin, 
facing towards right) and (right) from the front view (hip at origin, user facing inwards the plane). 
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Figure 4: Distribution of the palm over the entire dataset for performing the 12+1 activities. The points are 
presented in the user’s hips coordinate system. (left) shows the top-view (head at origin, facing towards right), 
(right) the frontal view (hip at origin, user facing inwards the plane). The color encodes the left and right hands. 
The unit is meters. 

Another notable aspect of our dataset is where exactly the 
object was handed over between participants depending on 
the activity. Figure 3 visualizes the distribution of handover 
locations in the user’s hip coordinate system, color-coded 
for each activity. The distribution of handovers from the top 
view (see Figure 3 left) shows that the distribution mainly 
extends to a hemispherical region of up to approx. 0.5 m to 
the primary user’s front and approx. 0.45 m to their right 

side. Interestingly, it exhibits a distinct skew towards the pri-
mary participant’s right side, infuenced by the positioning 
of the robot participant on this side. The front view (Figure 3 
right) shows that handovers were primarily performed in an 
area ranging from hip-level to approx. 0.5 m above hip level, 
while some handovers, primarily for activities performed at 
the head level, extend up to approx. 0.8 m above hip level. 
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Moreover, we were interested in the distribution of mo-
tion across all activities because we hypothesized that the 
varied conditions under which the handovers were per-
formed would result in a wide range of motion patterns, 
refecting the fexibility and adaptability of human motor 
behavior in response to diferent task demands. As depicted 
in Figure 4, the distribution of the primary user’s palm po-
sition with regards to the user’s hip joint throughout the 
activities reveals extensive coverage across the entire space 
in front of the user. The top view (Figure 4 left) and frontal 
view ( Figure 4 right) both show that the primary user uti-
lized a broad range of motion from left to right and head 
to hip, encompassing nearly all reachable areas, which sup-
ports our hypothesis of a large distribution of motion. 

4 Validating the Dataset with Models 
This section showcases our dataset’s usability for gener-
ating handover trajectories and predicting key handover 
characteristics through the following task settings: 

(1) First, we show that our dataset enables training of 
generative models which synthesize handover tra-
jectories of an SRL in a human-like manner. To this 
end, we train a conditional variational auto-encoder 
on the complete handover trajectories of the robotic 
participant, conditioned on the full-body motion of 
the primary participant. In efect, this task learns how 
the robotic arm should move. 

(2) Secondly, we show that with our data, we can train 
a model that predicts the locations of handover 
aligned with the actual handover locations. We train 
a conditional variational auto-encoder to predict the 
potential handover position and orientation at any 
given time on the trajectory. This task informs where 
the robotic arm should move to. 

(3) Lastly, we validate that our dataset contains the vital 
information for training a binary classifer that pre-
dicts when a handover occurs by only observing 
the primary user’s motions. This informs when the 
robot should start to move for a handover. 

For all the tasks described above, we provide details on the 
data processing steps, the model, and the training process 
and report technical evaluation results, where the model 
predictions are compared against the testing data gathered 
from human participants. We also identify the most infu-
ential joints to make training and system deployment more 
efcient. 

4.1 Generating the Trajectory of a 
Handover 

A key aspect that we aim to demonstrate in our dataset is 
allowing models to generate human-like handover trajecto-
ries, which is a challenging task due to the highly variable 
and high dimensional nature of the human body’s motion 
space. Specifcally, our goal is to generate motion trajectories 
from the starting point to the handover position, dynami-
cally accounting for the posture changes of a user during 
the handover. 

4.1.1 Data Processing. 

Motion representation. We defne human motion as time 
series data of sequential human body poses with timeframe 
� . At any given timestamp � , our dataset contains the posi-
tional and rotational data for all joints of both the primary 
human participant and the robot participant. The data pro-
cessing follows standard methods commonly employed in 
motion generative and predictive models (e.g., [47]). The 
joint’s position ( �� ) is represented in the rigged character’s 
root coordinates. Each joint’s rotation ( �� ) is represented in 
its local Euler angles. We normalize the poses by translating 
and rotating such that the root joint (hip) is positioned at the 
origin of the world coordinate system and skeletons are ori-
ented uniformly in the same direction. Finally, to maintain 
a continuous representation of joint rotations, we project 
the 3D rotational data into a continuous 6D space ( �� ∈ R6), 
a widely used technique [91]. 

The pose of the primary participant at timestamp � is 
expressed as a tuple of joint positions and local rotations, 
ℎ� = [ ��� , ��� ]. The human motion between timestamp �1 and 
�2 then is defned as the sequence of poses between �1 and 
�2: ℎ [�1:�2 ] [ℎ�1 : ℎ�2 ]= 
Similarly, we defne the robot user’s pose as �� = [���� , ���� ]
where ��� and ��� are the end-efector (right hand of the 
robot participant) position and rotation respectively. The 
robot motion is then � [�1:�2 ] = [��1 : ��2 ]. 

Input and output data. There are three inputs to our 
model: the primary participant’s full-body motion, the robot 
participant’s end-efector motion, and the handover state 
("handing over", "taking back," or "idle"). The motions of the 
primary and robot participants are symmetric time windows 
looking back � timestamps into the past and � timestamps 
into the future. We can describe such input data of the pri-
mary participant as ℎ [� −� :� +� ] and the robot participant as 
� [� −� :�+� ] . We set � = 25, corresponding to a duration of 
one second. The output of our model is the generated 3DoF 
next position of the robot end-efector mapped to the robot 
participant’s right hand from the 3HANDS. 

Train and test data separation. Our data comes from hu-
man subjects, where each participant’s data is likely to con-
tain unique patterns or behaviors. We perform a train-test 
split on the participant level to ensure the test data is com-
pletely unused for training. Specifcally, we randomly select 
two participant pairs (i.e., 4 participants’ data) as the test set, 
which are not involved in model training. The remaining 8 
participants’ data is utilized for training, and not involved in 
testing at all. This data separation is consistent throughout 
all the following models. 

4.1.2 Model. Conditional Variational Autoencoders (CVAE) 
[69] are one of the most popular architectures widely used 
for generating motions or poses [14, 18, 47, 63, 71], with an 
encoder-decoder structure. The encoder compresses high-
dimensional pose data into a smooth, continuous latent 
space (�), while the decoder generates the next pose based 
on this representation and conditional inputs. By modeling 
the probabilistic distribution of the data, CVAEs can gener-
ate diverse and realistic motion sequences through sampling. 
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Figure 5: Overview of our proposed model architecture 
for generating the trajectory of a handover based on 
the motion dynamics encoded into the model’s latent 
space. 

Among CVAE-based models, our approach builds upon the 
Motion Variational Autoencoder (MVAE) [47]. We chose 
MVAE as the basis for our model because of its demonstrated 
capabilities in autoregressive motion generation making its 
output robust against the highly variable motion inputs. 
MVAE utilizes a Mixture of Experts (MoE) architecture in 
the decoder, refning predictions by incorporating multiple 
specialized networks for diferent motion aspects. 

Building on MVAE, we propose SVAE (CVAE for SRL), 
a model specifcally designed for SRL’s motions in han-
dover processes. The model architecture is illustrated in 
Figure 5. While MVAE and SVAE share the same founda-
tional framework, SVAE addresses two novel challenges: 
generating SRL motion by considering both the user’s and 
the robot’s movements and adapting to varying handover 
states, which MVAE does not account for. A key enhance-
ment in SVAE is the integration of attention mechanisms 
across its components enabling the model to better capture 
the relevant temporal and spatial aspects of the input motion 
data. The encoder in SVAE, similar to MVAE, compresses 
high-dimensional data into a latent space, but it processes 
motion data over a time window that includes current, past, 
and future timesteps, unlike MVAE, which only handles 
current and past data. The decoder generates the next pose 
by sampling from the latent space, but in contrast to MVAE, 
our model is conditioned on both the robot’s and human’s 
observed motions. SVAE keeps the Mixture of Experts (MoE) 
architecture for the decoder, utilizing six expert networks 
and a gating mechanism. Additionally, our model introduces 
a latent controller (LC), which aligns the latent space with 
the specifc handover state ("handing in," "taking away," or 
"idle"). This context-aware layer provides enhanced con-
trol, allowing SVAE to manage the timing and variability 
of human-robot interactions during handovers, an essential 
feature not present in MVAE. The latent controller also in-
corporates an attention mechanism to adaptively align the 
input motions and handover state with the latent represen-
tation learned by the encoder. 

Here, we provide the loss function based on the Evidence 
Lower Bound (ELBO) to train the SVAE : 

� �
log �� (����� |�, ℎ����, ����� )�����

� = E��� � � 
− � KL ��� (� |ℎseen, � seen,�) | | � (� |ℎfull, � full)� � � � 

where � represents the current timestamp. ℎ and � refer to 
the primary participant and robot participant, respectively. 
The loss function has two main components. The frst term is� �
the reconstruction loss E��� log �� (����� |�, ℎ����, ����� ) . 
It measures how well the decoder can predict the next SRL 
pose ����� . � is the latent variable encoding the motion in-
formation, ℎ���� represents the observed human motion, 
and ����� represents the observed SRL motion up to the cur-
rent timestamp. This term ensures that the model generates 
accurate and contextually appropriate motions. The second 
term, ��, is the Kullback-Leibler (KL) divergence, which 
regularizes the latent space by aligning the learned posterior 
distribution ��� (� |ℎseen, � seen,�) with a prior distribution � � 
� (� |ℎfull, � full). Here, ℎfull and � full represent the full human � � � � 
and SRL motion data across the time window, and � de-
notes the handover state ("handing in," "taking away," or 
"idle"). The parameter � controls the trade-of between the 
two components in the ELBO. Balancing the model’s ability 
to reconstruct accurate motions and maintaining a well-
structured latent space that generalizes efectively, we used 
� = 0.1 in our setting. 

4.1.3 Training. Our training process is divided into two 
main stages. In the frst stage, we train the SVAE model for 
140 epochs. Following that, we use the trained SVAE to train 
the complete pipeline, which includes both the SVAE and 
the LC encoder, for 250 epochs. We begin with training the 
SVAE model for 10 epochs using only the reconstruction 
loss, after which we introduce KL divergence loss into the 
loss function. 

LSVAE = L��� + � · LKL(�SVAE,N(0,� ) ) 

We employ the adaptive moment estimation (ADAM) opti-
mizer, with a learning rate that decays from 10−4 to 10−7, 
starting to decay at the 50th epoch and continuing through-
out the training. 

In the second stage, we align the output of the LC encoder 
with the learned latent space of the SVAE while freezing the 
weights of the encoder in SVAE. For the frst 50 epochs, we 
minimize a loss based on the KL divergence between the 
learned latent space ��� �� and the latent of the LC encoder 
��� . After that, the reconstruction error is incorporated into 
the loss, and training continues for an additional 50 epochs. 
The loss function for the training process is: 

L��,�� �� = L��� + � · LKL(�SVAE,�LC ) 

We trained our model using reconstruction loss based on 
the l2 distance of the 3DoF of the robot’s end-efector (�̂), 
which corresponds to the right hand of the SRL participant 
from the dataset (�). 

We apply scheduled sampling during training, where 
the model’s output is fed back as input for autoregressive 
generation over � = 10 consecutive steps. The probability of 
using autoregression, � , increases from 0 to 1 over 50 epochs, 
after which the model is fully autoregressive (� = 1). The 
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ADAM optimizer is used again in this stage, with learning 
rate settings similar to the frst stage. 

4.1.4 Testing Results. We generate trajectories in two forms. 
One is non-autoregressive: we take the seen motion se-
quence of the test dataset to generate a single next position 
(�̂� ) and evaluate it against the ground truth position in 
the test data (�� ). The other is autoregressive: we provide 
the model with an initial starting position, which then con-
tinuously generates the next positions based on the very 
previously generated 25 robot positions. 

To quantify the quality of the generated trajectories, we 
report the Mean Absolute Error (MAE) of pairwise compari-
son between the generated and the ground-truth trajectories:Í� MAE = 1 1 Í 

�
� 
=1 |�� − �̂� |, where N is the length of � � =1 � 

the trajectories normalized by the number of trajectories �. 
Table 3 shows the MAE errors. Our model generates 

handover trajectories with MAEs ranging between 2.10– 
2.71 cm in the non-autoregressive setting. With autoregres-
sion, MAEs range between 10.42–23.85 cm. We observe that 
our model shows strong performance in the pairwise com-
parisons with the ground-truth in the non-autoregressive 
setting. The error increases in the autoregressive setting, 
which is expected as errors accumulate. It is important to 
highlight a key distinction between our motion generation 
task and previous related work (e.g., [47]). In most prior 
approaches, motion generation is based on observations of 
the same actor. In contrast, our model generates the mo-
tions of one actor (the robot user) based on the observations 
of a diferent actor (the primary user). This fundamental 
diference introduces additional complexity. Both actors in-
teract in a continuous real-time feedback loop, where the 
motion of one most likely directly infuences the motion of 
the other. This dynamic interplay cannot be fully accounted 
for in the autoregressive setting. It is to be assumed that in 
interactive real-world deployments, the error will be lower, 
as the primary user would adapt their motion trajectory to 
the robot’s trajectory. As this is a novel research question, 
future works should investigate more advanced models to 
further mitigate the error. One potential idea is to employ 
reasoning models, which infer the primary users’ intents 
and use that to condition or correct the robot’s motions. 

For a qualitative impression of the generated trajectories, 
we refer the reader to the Video Figure where we show 
several representative trajectories generated for diferent 
activities. Results show that our model generates plausible 
trajectories that are in keeping with the key characteristics 
of naturalistic human handover motion in close peripersonal 
space. 

To quantify the individual joints’ importance for generat-
ing motions, we employ a gradient-based sensitivity analysis 
[34, 55]. A higher gradient indicates this input feature has 
a higher infuence on the output. The result is shown in 
Table 4. Our fndings suggest that, on average, the positions 
of the "left shoulder", "right elbow" and "left hand" joints 
are most infuential, while the rotations of the "Face", "right 
elbow" and "right hand" ofer the most decisive rotation 
information for generating the handover trajectory. The 
neck’s position and the back’s rotation are the least decisive 
features. 
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MAE W/O MAE W/ Activity autoreg. (��) autoreg. (��) 
Mount a mic 2.55 ± 2.61 15.22 ± 16.52 
Apply sunscreen to face 2.70 ± 3.10 14.13 ± 15.95 
Apply body lotion to chest 2.60 ± 2.34 15.09 ± 16.67 
Shampoo hair 2.57 ± 2.25 12.77 ± 15.73 
Wash torso with washcloth 02.55 ± 2.33 15.03 ± 14.51 
Blow dry hair 2.55 ± 2.32 15.77 ± 15.58 
Straighten a pic (low) 2.34 ± 2.03 22.28 ± 24.55 
Straighten a picture (high) 2.60 ± 2.84 23.85 ± 28.23 
Hammer a nail 2.10 ± 1.80 10.42 ± 8.71 
Clean a window 2.71 ± 2.50 14.79 ± 15.85 
Paint the wall (low) 2.51 ± 2.43 10.72 ± 10.54 
Paint the wall (high) 2.59 ± 2.15 14.15 ± 16.59 
Neutral pose 2.60 ± 2.50 12.48 ± 13.88 

JIR Joint Position Joint Rotation 

1 Left shoulder Face 
2 Right elbow Right elbow 
3 Left hand Right hand 
4 Chest notch Left hand 
5 Head Right wrist 
6 Right shoulder Upper back 
7 Right hand Left clavicle 
8 Back Head 
9 Right clavicle Right clavicle 
10 Face Left elbow 
11 Upper back Left wrist 
12 Write wrist Right shoulder 
13 Left clavicle Neck 
14 Left elbow Chest notch 
15 Left wrist Left shoulder 
16 Neck Back 

Table 4: Joint Importance Rank (JIR) for handover 
trajectory generation, indicating the relevance of an 
individual joint’s position and rotation generating mo-
tions. 

Table 3: Results for generating the trajectory of a han-
dover. Mean absolute error in meters (m) is reported. 

4.2 Generating the Region of Transfer 
The 3D location where the object is a crucial characteristic 
in handover motions, and so is the rotation of hands at the 
time of handover. Such information regarding the position 
and rotation of the handover is also known as the “region 
of Transfer” or ROT [83]. Given that this ROT is the fnal 
product of a full trajectory, ideally, it can be predicted by the 
observed segments of the trajectory. In this subsection, we 
show that our dataset contains detailed motions that enable 
ROT prediction. 

4.2.1 Data Processing. Following Wiederhold et al. [83], we 
defne the handover coordinate (location) as the midpoint 
and the orientation as the direction of the axis that passes 
through the palms of the primary participant and robot 

https://10.42�23.85
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participant at the time of handover. At each timestamp � 
during the handover, the input to our model is the primary 
user’s motion ℎ [� −� :� ] and the robot user’s motion � [� −�,� ] 

over the past time period T=25 (1 sec). 
We acquire the ground truth handover coordinate and 

rotation as the 3D mid-point of user-SRL hands and the 
3D vector pointing from the giver’s hand to the receiver’s 
hand that shows the orientation of the user-SRL hands at 
the transfer time stamp. The output of our model is the 6 
DoF-generated ROT for the current motion of the user-SRL. 

4.2.2 Model. The generation of the RoT is very aligned 
with generating the trajectories in the previous subsection, 
as both are taking the primary user’s motions as input, how-
ever, the main diference is the timing of the output. While 
the trajectory generation relies on the autoregressive gener-
ation of the next positions sequentially, the RoT generation 
does not have this constraint. Therefore, we employ a con-
ditional variational autoencoder (CVAE) [69] for this task 
because its capability in pose generation has been demon-
strated in previous work [18, 63]. The encoder � in our 
CVAE encodes the input motions into the latent value �. 
The decoder � in our model samples from the latent dis-
tribution � and, conditioned on the human and the SRL 
motions, generates the 6 DoF ROT. 

4.2.3 Training. We train the pipeline for 250 epochs with 
an adaptive moment estimation (ADAM) optimizer, with 
a decaying learning rate from 10−4 to 10−7. The model is 
trained with �2 distance for position and orientation of the 
RoT. � � 

L = 
1 ∥p̂ − p∥2

2 + ∥q̂ − q∥2 
22 

where �̂ and � are the generated and ground truth 3DoF 
positions respectively, and �̂ and � are the generated and 
ground truth 3 DoF orientations. 

4.2.4 Testing Results. We examine the performance of the 
model in predicting the 6 DoF features of the RoT at each 
time stamp during the handover process by observing the 
motions from the past 1 second. Table 5 reports the mean ab-
solute error (MAE) for the 3 DoF position and the mean Euler 
angle error (MEAE) for the orientation of RoT. The results 
show that the model achieves MAEs that range between 
4.02cm and 8.04cm, while the achieved MEAE is between 
0.0002 and 0.004 radians. These relatively low errors indi-
cate that our dataset captures sufcient data to allow for 
predicting the Region of Transfer. 

Furthermore, we investigate the importance levels of 
individual joints of the primary user’s and the SRL’s motions 
for predicting the RoT information. The results are shown in 
Table 6. The left elbow’s position and rotation are reported 
to be the most infuential feature impacting the whereabouts 
of the RoT. 

4.3 Predicting the Timeframe of Handover 
We demonstrate our dataset’s capability to predict the mo-
ment the primary user wants to initiate a handover, just 
from observing the primary user’s motions. Similar to how 
humans use implicit cues without verbal expressions in 
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Activity MAE (��) MEAE (���) 
Mount a mic 
Apply sunscreen to face 
Apply body lotion to chest 
Shampoo hair 
Wash torso with washcloth 
Blow dry hair 
Straighten a pic (low) 
Straighten a picture (high) 
Hammer a nail 
Clean a window 
Paint the wall (low) 
Paint the wall (high) 
Neutral pose 

6.24 ± 2.82 0.0207 ± 0.0142 
7.37 ± 3.67 0.0268 ± 0.0196 
6.01 ± 2.85 0.0211 ± 0.0186 
8.04 ± 3.14 0.0165 ± 0.0121 
6.71 ± 3.12 0.0221 ± 0.0125 
7.45 ± 3.01 0.0240 ± 0.0176 
4.88 ± 2.45 0.0076 ± 0.0054 
5.69 ± 3.41 0.0092 ± 0.0088 
4.02 ± 2.49 0.0099 ± 0.0067 
6.13 ± 3.26 0.0159 ± 0.0107 
4.20 ± 2.13 0.0132 ± 0.0097 
6.41 ± 3.83 0.0179 ± 0.0124 
4.72 ± 2.57 0.0102 ± 0.0100 

Table 5: Test results for generating the region of trans-
fer: mean absolute error of the generated positions 
(left) and rotation angles (right). 

JIR Joint Position Joint Rotation 

1 Left elbow Left elbow 
2 Chest notch Chest notch 
3 Face Left shoulder 
4 Head Right shoulder 
5 Right wrist Right elbow 
6 Right clavicle Right wrist 
7 Left wrist Neck 
8 Left clavicle Upper back 
9 Left hand Face 
10 Right elbow Left wrist 
11 Left shoulder Left hand 
12 Right hand Right clavicle 
13 Back Head 
14 Upper back Left clavicle 
15 Right shoulder Back 
16 Neck Right hand 

Table 6: Joint importance rank (JIR) for generation 
of Region of Transfer, indicating the relevance of an 
individual joint’s position and rotation. 

human-to-human handover [82], we demonstrate that our 
dataset encapsulates such implicit cues and thus allows for 
training a model for prediction. We defne this problem as a 
binary classifcation problem, where the model is trained to 
predict whether a handover is currently ongoing or not. 

4.3.1 Data Processing. As "handover", we defne the se-
quence of frames that begins when the robot user starts 
moving, and that ends when the robot user’s hand has 
returned to its resting position after the object has been 
handed over. Our dataset comprises ground-truth annota-
tion with a binary variable � that indicates for each frame 
whether it belongs to a "handover" or not. 

At each timestamp, � , the input to the model consists 
of a sliding window of the user’s motion data over a time 
window of length � = 25 (1 sec) previous to the current 
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timestamp ℎ [� −� :� ] . The model’s output at each timestamp 
� is a continuous foat value representing the likelihood of 
a handover being in progress at � . We use thresholding to 
convert this likelihood into a binary classifcation result: 
any value greater than 0.6 is considered a "handover". 

4.3.2 Model. We employ a model composed of a 3-layered 
fully connected neural network with 128 nodes in each layer. 
For the activation functions, the frst two layers are followed 
by the ELU function, and the last layer is followed by the 
Sigmoid function after the last linear layer, to ensure the 
output is bounded to [0, 1]. 

4.3.3 Training. We trained our model on all instances of 
handover in the train data, regardless of how the participants 
had communicated their handover intent. We used the same 
optimizer type (ADAM) and decaying learning rate (10−4 to 
10−7 as in our previous experiments. We trained the model 
for 500 epochs with the binary cross-entropy loss function. ∑ 1 � � � 

L = − �� log(�̂� ) + (1 − �� ) log(1 − �̂� )
� 

�=1 

4.3.4 Testing Results. Results of classifcation accuracy are 
detailed in Table 7. Across all activities, the model achieves 
an accuracy of 84.3%. They were highest (100%) for wash-
ing the torso with a washcloth activity and lowest (66.7%) 
for the hammering a nail activity. We have also analyzed 
whether the parameters of the user’s activity (height, dis-
tance from the body, motion range, see Section 3.2) have an 
infuence on how accurately an intended handover can be 
identifed. The model has achieved the maximum accuracy 
for the activities performed close to the body (90.3%), and 
a somewhat lower accuracy for activities away from the 
body (79.5%). The accuracy of the model is also highest for 
activities comprising a large motion range (88.5%) and small 
motion range (85.0%), and slightly lower for activities with a 
medium motion range (79.2%). The height of activities does 
not afect classifcation accuracy (≈84% for both head and 
torso levels). 

Table 8 shows the result of the Joint Importance Rank 
(JIR) analysis. It reveals that the position of the left wrist 
and the rotation of the neck are the most impactful features 
in the primary user’s motion features that can convey that 
a handover is happening. 

5 User Study: Validating the Perceived 
Quality of the Handover Interaction 

We conducted a user study to compare the perceived qual-
ity of overall handover interactions generated by our data-
driven method, trained on the 3HANDS dataset, with an 
established baseline method for performing handovers with 
an SRL [17]. To focus on validating the efcacy of our dataset 
and its capability to enable generative models while mini-
mizing confounding variables potentially introduced by a 
specifc hardware implementation, we carried out the user 
study in a virtual reality (VR) environment. 

5.1 Experiment Design 
The study employed a within-subject design. The partici-
pants were asked to perform handover interactions with a 
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Activity 

Mount a mic 
Apply sunscreen to face 
Apply body lotion to chest 
Shampoo hair 
Wash torso with washcloth 
Blow dry hair 
Straighten a pic (low) 
Straighten a picture (high) 
Hammer a nail 
Clean a window 
Paint the wall (low) 
Paint the wall (high) 
Neutral pose 
Overall 

Accuracy 

91.7% 
91.7% 
91.7% 
83.3% 
100% 
83.3% 
75.0% 
83.3% 
66.7% 
75.0% 
81.3% 
91.7% 
83.3% 
84.4% 

Table 7: Classifcation accuracy for predicting the time 
frame of handover. 

JIR 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Joint Position Joint Rotation 

Left wrist Neck 
Chest notch Right shoulder 
Head Right elbow 
Chest notch Left elbow 
Upper back Face 
Back Back 
Right hand Left shoulder 
Right elbow Right wrist 
Face Left wrist 
Right wrist Right arm 
Left arm Left arm 
Left elbow Chest notch 
Neck Upper back 
Right shoulder Head 
Left shoulder Right hand 
Right arm Left hand 

Table 8: Joint Importance Rank (JIR) for predicting 
the timeframe of handover, indicating the relevance 
of an individual joint’s position and rotation. 

virtual SRL, where the SRL’s motions are generated by the 
baseline and 3HANDS data-driven methods. To constrain 
the overall study duration to an hour and still allow for two 
repetitions and a wide range of diferent motions, we se-
lected 6 out of 13 total activities. The handover approaches 
were counterbalanced with a Balanced Latin Square to mit-
igate order efects. After experiencing one approach, the 
participants were asked to respond to eight 7-point Likert 
questions (see Figure 7), focusing on the aspects of natu-
ralness, comfort, physical demand, predictability, timing, 
smoothness, and appropriateness. We recruited a total of 10 
participants (5 male, 5 female, aged 16-58). The participants 
received monetary compensation for their participation in 
the study. 
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5.2 Motion Generation Approaches 
We implemented the following two methods: 

5.2.1 Generative Models Trained with the 3HANDS Dataset. 
Our approach integrates the trajectory generating SVAE 
model (subsection 4.1) and the handover timeframe pre-
dicting model (subsection 4.3). The handover timeframe 
predicting model continuously monitors the user’s mo-
tions to determine whether the user is initiating a handover 
process or engaged in another activity. Once the handover-
timeframe-predicting model detects that the user has 
initiated a handover process, the SVAE model then begins 
generating SRL’s motion autoregressively, based on both 
the current and past motions of the user and the SRL. The 
handover is completed when the SRL’s end-efector comes 
within close distance of the user’s hand, at which point 
the SRL halts its motion to fnalize the transfer. To prevent 
the object from entering the hand’s simulation and causing 
object-hand collisions, we set the distance threshold to 12 
cm, taking into account the object’s size of 10 cm. In the 
following, we refer to our approach as 3HANDS. 

5.2.2 Baseline Approach. The most established approach 
to drive an SRL to complete handover motion is by predict-
ing the user’s hand position via extrapolation. We chose 
a baseline implementation from closely related prior work 
that shares the same SRL-centric setting with our scenario 
[17]. In this approach, pre-defned activation regions in the 
workspace serve as triggers for the SRL. When the user 
places their hand within one of these predefned 3D vol-
umes, the SRL recognizes the user’s intention to initiate a 
handover. Once activated, the SRL relies on a Kalman flter 
to predict the next 3D position of the user’s hand until the 
handover is complete. 

Using the predicted 3D position, the SRL calculates a 
trajectory to approach the user’s hand. The SRL stops its 
movement when it reaches a predefned distance (12 cm 
in our implementation) from the user’s hand, waiting for 
the object to be transferred. The SRL in the original paper 
utilized a 6-degree-of-freedom (6DoF) confguration, with 
3DoF dedicated to reaching the goal position and the addi-
tional 3DoF used for collision avoidance. However, in our 
study, the SRL has a 3-degree-of-freedom (3DoF) confgura-
tion, focusing solely on the end-efector’s position because 
collision avoidance is not the focus of our study. In the 
following, we refer to this approach as baseline. 

5.3 Apparatus and Task 
The experimental setup to evaluate the handover approaches 
was implemented in a virtual reality (VR) environment using 
Unity3D, run on a Quest Pro VR set. The whole experiment 
was run on Windows 10 with NVIDIA GeForce RTX 4090 
GPU. The participants observed a humanoid representation 
of themselves in VR, and an SRL was virtually mounted on 
their hip (see Figure 6). The object for the handover was 
a sphere positioned at the end-efector of the SRL. During 
the experiment, the user’s and SRL’s current poses were 
transmitted to the model at each time step. The model then 
generated the SRL’s subsequent position, both during han-
dover interactions and while the SRL remained idle. 

Figure 6: First person view in VR of the handover in-
teraction: Participants performed a task and then in-
structed the SRL to hand over the green ball either 
using the 3HANDS or baseline method. 

5.4 Procedure 
Participants were frst introduced to the study, followed 
by a tutorial for both approaches. Then, each participant 
performed 24 handover trials (2 approaches, 6 tasks, 2 repe-
titions). After each trial, they answered the 8 questions. 

5.5 Results and Discussion 
We analyzed the Likert ratings using Wilcoxon Signed Rank 
Tests. The results are presented in Figure 7. 

5.5.1 Perceived Naturalness. Question 1 (The interaction 
was as natural as asking a friend to hand over the object) and 
question 3 (The handover felt natural) focus on the user’s 
perceived naturalness. We asked two questions to capture 
two facets of naturalness: Q1 focuses on interpreting natu-
ralness as interacting with a friendly human, while question 
3 leaves more room for a broader interpretation. We found 
signifcant efects for both question 1 (3HANDS median = 
6, baseline median = 3, W = 2086, p < .001) and question 3 
(3HANDS median = 6, baseline median = 3, W = 3197, p < 
.001). The results indicated that 3HANDS allows for higher 
perceived naturalness. 

5.5.2 Perceived Physical Demand and Comfort. Question 
2 (The handover was physically demanding) and question 
7 (The handover process felt comfortable) are related to the 
perceived physical demand and comfort. We found a signif-
cant diference in question 2 (3HANDS median = 2, baseline 
median = 4, W = 10855, p < .001), indicating 3HANDS allows 
for generative models for motions with less perceived de-
mands. Similarly, we found a signifcant efect for question 7 
(3HANDS median = 6, baseline median = 5, W = 3538.5, p < 
.001) which indicates that 3HANDS led to higher perceived 
comfort. 

5.5.3 Predictability and Smoothness. Question 4 (The mo-
tion of the robotic arm was predictable) and question 5 (The 
limb’s movements were smooth and continuous) examined the 
perceived predictability and motion smoothness. Wilcoxon 
Signed Rank Tests showed no signifcant diferences be-
tween 3HANDS and baseline (both � > 0.05). Medians of 5 
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15%
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66%
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Figure 7: Results of the 7-point Likert scale for qualitative questions comparing the data-driven 3HANDS and 
baseline approaches. 

for baseline and 6 for 3HANDS indicate promising handover 
smoothness and predictability for both approaches. 

5.5.4 Perceived Timeliness and Appropriateness. Finally, ques-
tion 6 (The handover timing matched my expectations) and 
question 8 (The robotic limb reacted quickly and appropri-
ately to my actions) validated the perceived timeliness and 
appropriateness of the handover motion. For question 6, a 
signifcant diference was found between 3HANDS and base-
line (3HANDS median = 6, baseline median = 5, W = 5512.5, 
p < .01). We also found a signifcant diference in question 8 
(3HANDS median = 6, baseline median = 5, W = 5170.5, p < 
.001). These fndings highlight that the data-driven method 
is better in timing and more appropriate motion. 

5.5.5 Summary. To conclude, our approach generated more 
natural, more comfortable, more timely, and more appropri-
ate handover interaction motions compared to the baseline. 
The results highlight the application opportunities of our 
3HANDS dataset and the presented generative models. 

6 Discussion and Limitations 
Our results demonstrate that the dataset efectively cap-
tures the key features of human-to-human, asymmetric, and 
asynchronous handover motions, making it well-suited for 
training SRLs. Notably, our dataset enables models to ac-
curately generate handover motions, predict the handover 
region, and determine the timing of the handover event. 
The positive results in the user study indicated the mod-
els trained with the 3HANDS dataset generally result in 
more natural, more comfortable, and smoother handover 
interactions. Future research should explore more complex 
architectures. 

An important future direction is to implement our model 
in practical applications. Future research should deploy our 
data-driven handover models in physical SRLs. One poten-
tial challenge is bridging the gap between synthetic en-
vironments and real-world conditions; exploring various 
techniques for improving simulation-to-reality (sim2real) 

transfer will be required. Additionally, rapid and robust con-
trol methods coupled with accurate motion sensors may 
be essential to match the generated physical motions with 
the desired outcomes. Moreover, the development of safety-
aware generative models is critical to ensure that predicted 
trajectories are compatible with safe and reliable robot op-
eration. 

Our dataset has further potential for applications beyond 
the models we explored in this paper. One promising av-
enue is to analyze human-to-human handover dynamics 
when primary activities are performed simultaneously with 
implicit handover requests. Research could shed new light 
on the intricacies of human communication and collabora-
tion by examining how humans coordinate and complete 
tasks while handing objects to others. This understanding 
could be utilized in various contexts, such as developing 
more natural and intuitive interfaces for multi-user scenar-
ios. Furthermore, our dataset could also serve as a basis 
for generating realistic human-to-avatar handovers in vir-
tual environments. An exciting and timely direction would 
be the deployment of our models in virtual reality, where 
virtual arms could perform object handovers with human 
users. This application reduces the need for the precise con-
trol methods required in the physical world but presents 
the challenge of rendering realistic motions for objects of 
varying and unconstrained properties and from diferent 
directions. By incorporating the captured nuances in avatar 
interactions, we can create more immersive and engaging 
virtual environments that better refect social dynamics. 
Increasing the predictability of object interactions from reli-
able real world data furthermore helps reduce the cognitive 
load during VR interactions in the absence of additional 
feedback modalities (like haptics) that are available in real-
world SRL interactions. Addressing this challenge will be 
key to expanding the model’s use in virtual environments. 
Additionally, our dataset may be leveraged to train the arm 
motion of mobile robots to exhibit human-like motion pat-
terns around and near humans, enabling them to navigate 
complex social situations more easily and naturally. 
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While our study successfully demonstrates the feasibility 
of recording human motions for robotic trajectory genera-
tion, we acknowledge that the setup exhibits a downward 
bias in handover locations and human enactment may not 
always fully capture the nuances of robotic motion, partic-
ularly due to the diferences in morphology and origin be-
tween another person’s arm and a specifc implementation 
of a body-worn robotic arm. Moreover, the social dynamics 
of two interacting humans may not be fully representative 
of interactions with a robotic arm, as the latter might be 
perceived as inherent extensions of one’s own body. We at-
tempted to mitigate this issue to the extent possible by only 
recording data from couples who live in a stable relation-
ship and hence interact comfortably in close peripersonal 
space, and by shielding the robot participant’s head from 
the primary user’s view. 

Future research should consider using our models as pre-
trained baselines for fne-tuning in specifc applications. 
For example, researchers could fne-tune our model for 
handover motions in diferent robotic arm settings (e.g., 
shoulder-mounted or environment-mounted). 

Additionally, our dataset focuses on trajectories without 
including object-specifc details. Diferent objects may re-
quire distinct handling strategies, afecting parameters such 
as grasp, object orientation, and motion speed. Future work 
should fne-tune the model with object properties so that it 
can generate motions tailored to the afordances of difer-
ent objects, such as mugs containing liquid or heavy items. 
Because our models are trained on general handover tasks, 
they support transfer learning with minimal data. While 
incorporating object afordances and hand interactions are 
two possible extensions to the handover space defned by 
3HANDS, their coverage is out of the main focus of this 
work. We acknowledge their potential for future work and 
have included hand joints tracking in the 3HANDS to sup-
port future exploration. Furthermore, our user study on 
perceived motion quality is deployed in a VR setting to 
ensure the efects of the confounding variables raised by 
physical environments are minimized. Yet, future research 
should integrate sophisticated control methods to bring such 
handover interactions from VR to the physical realm. 

Moreover, our positive outcomes suggest that subsets of 
our dataset can be used to train lightweight models. For 
instance, researchers could focus on the most critical joints 
identifed in our experiments (e.g., left hand, left wrist) and 
develop models accordingly. By gathering additional data 
on these key joints, transfer learning can be further applied 
to specifc tasks. Finally, our joint importance analysis ofers 
valuable insights for future data collection in other handover 
scenarios. In situations where full-body tracking is not fea-
sible, this analysis can guide sensor placement decisions 
to optimize data collection and deployment of interactive 
systems. 

Finally, a signifcant and novel challenge we identifed is 
that the autoregressive generation of robot motions does not 
closely align with ground truth data. This challenge arises 
because the model generates the robot’s motions while ob-
serving only the primary user’s movements—an issue that 
signifcantly difers from existing motion generation tasks. 
Addressing this challenge may necessitate more complex 

models. One potential solution is to enhance the model’s 
reasoning capabilities, allowing it to better interpret the 
primary user’s intentions (e.g., waiting to receive an object, 
moving to a destination, being occupied, etc.) and use this 
additional context to inform the motion generation. An-
other approach could be the integration of reinforcement 
learning, which could train a policy model to adapt to the 
environment and the primary user. 

7 Conclusion 
In this paper, we have presented the 3HANDS dataset, which 
provides extensive capture of object handovers between 
closely interacting humans. It considerably extends beyond 
prior datasets by its asymmetric spatial confguration with 
handovers occurring in intimate peripersonal space, the 
participant’s asymmetric roles, real-world primary activities, 
and implicit coordination of handover. This is representative 
of the unique demands of handovers between humans and 
wearable robotic limbs. 12 unique pairings of participants 
were captured in 41 synchronized 2K camera views, from 
which we calculate rigged 3D skeleton data and hand poses. 
The dataset also includes transcripts of utterances, such 
as verbal commands and reactions, as well as manually 
annotated ground-truth data for object handover. 

In a series of experiments, we demonstrate the applica-
bility of the dataset for training models for interaction with 
SRLs. We contribute models and corresponding technical 
evaluation results that each address one key aspect of a han-
dover activity. We contribute a generative model, based on 
a conditional variational autoencoder, which generates the 
trajectory of a handover in response to the primary user’s 
motion. Furthermore, we present a model that can accu-
rately generate the region of transfer, where an object will 
be handed over. Additionally, we show that using our dataset 
it is possible to accurately predict, solely from implicit user 
posture, when the handover should be initiated. Finally, we 
deployed our models for performing handover interactions 
compared to an established baseline approach in a VR set-
ting. The user study showed that our data-driven approach 
enables more natural and comfortable handover interac-
tion, further highlighting the potential value of 3HANDS 
for training SRL models. 

We share the dataset with the community to foster fu-
ture research on interactive systems and to help deepen 
the understanding of the unique characteristics of handover 
activities in close personal space. 
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