
I Need a Third Arm! Eliciting Body-based Interactions with a 
Wearable Robotic Arm 

Marie Muehlhaus 
Saarland University, Saarland Informatics Campus, 

Saarbrücken, Germany 
muehlhaus@cs.uni-saarland.de 

Marion Koelle 
OFFIS –Institute for Information Technology 

Oldenburg, Germany 
marion.koelle@ofs.de 

Artin Saberpour 
Saarland University, Saarland Informatics Campus, 

Saarbrücken, Germany 
saberpour@cs.uni-saarland.de 

Jürgen Steimle 
Saarland University, Saarland Informatics Campus, 

Saarbrücken, Germany 
steimle@cs.uni-saarland.de 

Figure 1: Several examples from the full set of 122 unique user-defned signs identifed in this work. Touch-based gestures 
are particularly preferred for basic controls (A) or to handle emergencies (D), mid-air gestures for navigation (C) and object 
manipulation (B). A full listing of most preferred user-defned signs for hands-free and hands-busy settings is given in Table 2. 

ABSTRACT 
Wearable robotic arms (WRA) open up a unique interaction space 
that closely integrates the user’s body with an embodied robotic 
collaborator. This space afords diverse interaction styles, including 
body movement, hand gestures, or gaze. Yet, it is so-far unexplored 
which commands are desirable from a user perspective. Contribut-
ing fndings from an elicitation study (N=14), we provide a compre-

hensive set of interactions for basic robot control, navigation, object 
manipulation, and emergency situations, performed when hands 
are free or occupied. Our study provides insights into preferred 
body parts, input modalities, and the users’ underlying sources of 

inspiration. Comparing interaction styles between WRAs and of-
body robots, we highlight how WRAs enable a range of interactions 
specifc for on-body robots and how users use WRAs both as tools 
and as collaborators. We conclude by providing guidance on the 
design of ad-hoc interaction with WRAs informed by user behavior. 
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1 INTRODUCTION 
Robots are moving onto the human body and hold great promise 
for assisting users in manual or physical tasks. Pioneering work 
has shown frst examples of robotic limbs that can be worn on the 
user’s body to provide a third arm [16, 56] or an additional fnger 
[23]. The additional limb can either synergistically complement the 
basic function of human limbs, for instance a sixth fnger can help 
to hold a large object; or it can act more independently, for instance 
holding a heavy item while the user is afxing it with a screw. Usage 
contexts range from professional, specifc domains such as the 
reduction of workload of assembly workers [48], assisted crawling 
[13], or assisted learning of motor skills through robotic guidance 
[16, 35] to more personal applications in everyday life, such as 
carrying bags, moving hot items, or balancing large objects [71]. 

This very close integration of human and robot, and the resulting 
embodied partnership create new opportunities and challenges for 
human-robot interaction [22, 27]. While the Wearable robotic arm 
(WRA) may be able to perform some of its tasks autonomously, 
based on awareness of the task and context [58], we anticipate that 
many situations will require explicit user control and intervention. 
For instance, the user must be enabled to correct the robot’s actions 
in real-time, to perform complex tasks through direct control of the 
robot, to fexibly manage collaboration without pre-planning task 
assignments, or to handle emergency situations. 

However, these real-time interactions with a WRA have not been 
thoroughly investigated so far. Particularly, we lack a user-centric, 
systematic understanding of how users prefer to interact with a 
WRA. This is particularly critical since a WRA unifes characteris-
tics of a body part, a hand-held tool, and an external collaborator. 
This opens up a unique interaction space, which is largely unex-
plored so far. A better understanding of this space is necessary for 
designing usable interactions with WRAs that people are actually 
willing to use in their day-to-day life. 

In this paper, we contribute insights from the frst elicitation 
study on human-robot interaction with a WRA. Based on user-
elicited commands, we address the following key questions for the 
interaction with the robot, which impact usability and its design: 

• What are principled ways that users would like to employ 
to interact with a WRA? What body parts, input modalities, 
and input areas do users prefer? 

• What kinds of signs do users perform to control the WRA? 
How can interactions with WRAs be designed in a way that 
refects user’s preferences? Where do users draw inspiration 
from for the actions they suggest? 

• Considering that a WRA can be particularly helpful in tasks 
where the user’s natural hands are occupied with holding 
or manipulating objects, how do user’s preferences change 
when hands are occupied in a primary task and therefore 
constraint or unavailable for human-robot interaction? 

We conducted an unlimited gesture production elicitation study 
[14, 77] with a WRA form factor prototype to elicit gestures for a 
set of 14 robotic actions. These comprise, e.g., basic robot control, 
interaction with an object, interactions with a jointly held object, 

and handling situations of emergency. In addition, we also system-

atically investigated users’ strategies used to control robot motion. 
We opted for using a passive physical prototype of a WRA that 
had the form factor of a third arm. It neither contained motors 
for actuation, nor any form of sensing or output. This allowed us 
to freely explore the design space in breadth and depth without 
restrictions imposed by limitations of today’s technologies. 

In this article, we present insights into preferred body parts, 
uncover what are preferred modalities of interaction, and present a 
detailed analysis of participant’s preferred signs for all 14 actions, 
in hands-free and hands-occupied situations. These insights allow 
us to discuss implications for the design of interactions with WRAs 
and the required technology. With our work, we hope to get one 
step closer to the vision of natural and fuid interactions between 
robots and humans. 

2 RELATED WORK 
Our work is motivated by a lack of empirical studies for human-

robot interaction, particularly regarding the design of and interac-
tion with WRAs. 

2.1 Human-Robot Interaction 
With rapid advances in robotics and its application in many do-
mains, we need a better understanding of human factors in human-

robot interaction [61]. Particularly since humans seem to perceive 
robots to be neither a typical device nor a being, it is crucial to 
understand how to design interactions with such technologies 
[20, 28]. Of note, it is unclear how to best design interactions ofer-
ing variable, but suitable levels of agency, which can range from 
teleoperation to fully autonomous agents [39, 63]. Some approaches 
suggest to assign tasks prior to the execution of a plan. But pre-
planning of task assignments is problematic, as the human user 
might change their goals fexibly. Thus, it is especially crucial to 
understand how human-initiated, real-time control should be real-
ized. For this purpose, elicitation studies have already been proven 
helpful in various areas [75, 77]. However, elicitation studies are 
rare for human-robot interaction. Some of the few examples elicit 
commands for a telepresence robot which should support commu-

nication between remote and local users [3], for a mobile robot 
[7], and most frequently for the control of single drones [8, 47, 59], 
and swarm drones [29, 51]. Our work addresses this knowledge 
gap through an elicitation study to understand how users desire to 
interact with a WRA. 

2.2 Wearable Robotic Arms 
Wearable robotics is a widely researched area [54]. Wearable robots 
cover various form factors, such as robotic legs [49], fngers [23], 
and arms [56, 72] which extend the human body, as well as medical 
prostheses [26, 31]. Whilst robotic prosthetic arms replace missing 
arms, we investigate robotic arms that add supernumerary limbs to 
augment the human body with additional functionality. Previous 
work has presented promising approaches to build such WRAs. The 
suggested designs show a broad variety, both for either single-arm 
[18, 50] and two-arm prototypes [16, 34, 56]. Common attachment 
points involve the shoulder to ease overhead work [5, 79], the 
forearm [71, 72], the upper arm [78], the hips [44, 73], or can be 
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worn like a backpack [34, 56]. Whilst most WRAs have a rigid link-
and-joint-based structure, enabling between 3 and 6 Degrees of 
Freedom [5, 56], there are also examples of soft robots that ofer 
continuous deformations; for instance, Soft Poly-Limbs resemble 
a fexible elephant trunk which can manipulate objects through 
various end efectors [44, 45]. Similarly, Orochi is a soft WRA which 
can be worn like a scarf around the body [1]. Furthermore, there 
are also devices which are not exclusively third-arm systems, but 
their form factor allows them to be used as such since they consist, 
e.g., of a chain of servo motors [40]. 

Artifcial intelligence allows to turn the WRA into an intelligent 
agent that can act autonomously, be task- and context-aware [58], 
or has the ability to adapt to behavioural patterns over time [66]. But 
research has also contributed a distinct set of mechanisms which 
allow for explicit human-initiated control. For instance, MetaArms 
control robotic arms through remapping feet motions directly on 
the robotic arms [56]. In addition, human hand positions [18, 45], 
shoulder motions [62], EMG sensors on the biceps [33], and vo-
cals [72] have been suggested as a means to directly control the 
robotic arms. Brain-Computer Interfaces (BCI) have also been used 
for this purpose; for instance, Penaloza et al. used BCI to make a 
robotic arm grasp objects [50]. Beside body-centered interactions, 
we also fnd various examples which use external devices to con-
trol a robot. These involve, e.g., a joystick [44], a separate handle 
directly attached to the robotic arm [16], or a GUI which allows 
a user to program the robotic arm [1]. However, there are only 
few examples for which the suggested interaction techniques have 
been evaluated in terms of a user study with several participants 
[56, 71, 72]. Instead, the operability of the implemented system is 
commonly demonstrated through single-user proof-of-concepts. 
For instance, Guggenheim et al. demonstrated the usability of their 
system by showing how a person uses this system to open a door 
whilst hands are occupied with a primary task [18]. Consequently, 
research lacks systematic evaluations of the user’s perception for 
the proposed interaction techniques. We address this gap with our 
empirical study. 

3 METHOD 
It is crucial to provide human operators with easy-to-use means 
for controlling robots, especially when they are novices or non-
expert users. This need has been widely recognized and considered 
important in literature [11, 12, 18, 54]. Elicitation studies are a useful 
tool to empirically ground what interactions are found desirable by 
end users [32, 75, 77]. To the best of our knowledge, no previous 
work approached the interaction with WRAs from a user-centred 
perspective so far. We address this gap with this elicitation study 
using an unlimited production approach [14, 77]. We iteratively 
refned our study design through an extensive series of pilots. In 
the following we detail on the resulting prototype and procedure. 

3.1 Prototype 
As common in elicitation studies, we opted for a passive proto-
type, to avoid biasing the study results by restrictions of current 
technology, a specifc set of sensors, or a certain type of output. 
The light-weight prototype has the form factor of a WRA, made 
of soft but stif PE foam tubes and a plastic gripper (see Figure 2). 

Hereby, we took inspiration from existing designs of robotic arms. 
Particularly, we opted for a rigid link-based structure. For simplicity, 
we decided to only model one articulated joint. The robotic arm’s 
dimensions are based on the average length of a female extended 
arm (73.4 cm) [53]. The prototype can be worn like a backpack, as 
frequently proposed in the robotics community [16, 35, 57]. The 
robotic arm can be moved by the experimenter through an ex-
tension stick attached to the arm, but can also be freely moved 
around by the user. The extension stick was chosen to ensure the 
experimenter did not invade participants’ personal space when 
moving the prototype. Furthermore, the prototype can be worn 
either left or right such that it can be attached at side of the user’s 
dominant arm. In initial pilot studies, we had alternatively tested 
using human arms covered with textile to simulate the robotic arm 
in Wizard-of-Oz style, similar as suggested by [69]. However, we 
found that human arms were prone to bias as some participants 
felt uncomfortable with the experimenter standing closely behind 
them and hesitated to touch the human arm for interaction. 

Figure 2: Study setup with the WRA form factor prototype. 
The backpack-worn arm is made of foam tubes, a basic grip-
per, and one articulated joint. The experimenter uses a stick 
to control it. 

3.2 Procedure 
Our study procedure is modeled after comparable gesture elicitation 
study designs in HCI, e.g., [75, 77]. We adapted the elicitation proce-
dure through increased production to enable a broader exploration 
of signs and to reduce legacy bias [14]. The study session took 
place in a quiet environment, in single-user sessions. Participants 
suggested signs while standing in front of a table. After collecting 
informed consent and demographic information, we asked the par-
ticipant to put on the WRA. Our main study procedure followed 
three steps, done for each referent: 

First, we presented the participant with one of the 14 referents 
(see Table 1), each introduced by reading out their textual descrip-
tion. The order was fxed such that the referents’ complexity and 
the presented level of robotic autonomy was increasing. Refer to 
Appendix A for the concrete instructions read out. We further 
demonstrated the efect of the referent by acting out motions using 
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the WRA to create a more realistic interaction. As our pilot studies 
had indicated that user suggestions were biased by functionalities 
ofered by specifc objects such as screwdrivers or other tools, we 
opted against using such objects, and instead used generic styro-
foam cubes (10 × 10 × 10 cm). Similar approaches using a 2D- or 
3D cube world have been proven useful in prior studies [36, 77]. 

Second, after demonstrating the efect of a referent, we asked 
the participants to suggest signs which they would prefer to use 
for this command, without accounting for any potential techno-
logical constraints. Aiming for a focused analysis, we restricted 
suggestions to non-verbal signs. To reduce legacy bias, participants 
could suggest as many signs as they wanted [14]. We encouraged 
them to think aloud to obtain rich qualitative data that would be 
indicative of their mental models. We specifcally asked them to 
verbally describe the signs they performed and to describe their 
reasoning as accurately as possible. 

Third, given their set of non-verbal signs for a referent, we then 
asked participants which of their suggestions was their overall 
favorite and why. In case the suggested sign was not compatible 
with a hands-occupied setting, i.e., when the preference involved 
motions with the hands or arms, we asked for an alternative pre-
ferred sign that can be used in hands-occupied. As for four of our 
referents, one hand is naturally part of the interaction because the 
referents themself involve, for instance, that the hand is holding an 
object jointly with the robot, participants were allowed to select 
signs involving the corresponding hand for the hands-occupied 
setting, but not the other hand. This procedure allowed us to collect 
a variety of signs per referent and understand user preferences and 
patterns both under hands-free and hands-occupied conditions. 

The elicitation was complemented through interleaved questions 
which asked, for instance, about challenges that participants see for 
the interaction with the robotic arm when controlling its motion 
or when the arm acts autonomously. Each session took around 90 
minutes and was video-recorded. 

3.3 Referents 
We elicited signs for 14 referents, listed in Table 1. We opted for 
domain-independent commands that cover diferent types of inter-
actions with a robot which serves to enable a broad exploration. 
The set of commands was evolved iteratively through consultation 
with literature, a series of pilot studies, and discussions amongst co-
authors. We grouped the commands into four main categories: basic 
control, robot motion, object manipulation, and handling emergencies. 
We selected activate and deactivate as referents for basic control 
of the robot’s functionality. As robots can ofer autonomous actions 
that the user might need to trigger explicitly, e.g., as mentioned in 
[58], we included two referents in which the user delegates control 
to the robot to complete a task autonomously (release control) 
and retains control afterward (retain control). To allow for inter-
leaved phases of direct human control in mixed-initiative settings, 
we further included two navigation and object manipulation refer-
ents, respectively, that give the user more explicit control and allow 
for low-level intent communication: translate, rotate and pick 
Up, put Down. These basic navigation and manipulation tasks have 
been frequently addressed in prior work, e.g., [16, 18, 44, 56, 72]. As 
robotic arms are also promising for jointly moving objects together 
with the user or for handover tasks [2, 71, 72], we complemented 
the existing navigation and manipulation referents by their col-
laborative counterparts translate jointly, rotate jointly and 
hand over object, take over object. Lastly, due to the WRA’s 
proximity to the human body, handling emergencies is particularly 
crucial to avoid endangering the user or invading their personal 
space. To better understand how the user wants to intervene in 
such undesirable actions, we included emergency stop where the 
user “aborts” [7] or “stops” [74] the robot, and get-out-of-my-way 
which tells the robot “Don’t get too close to me” or “Go away” [17]. 

Group Referent Referent Description 

Activate 
Deactivate

Basic Control 
Release Control 
Retain Control 

The user activates the robot. It goes from standby into listening mode. 
The user deactivates the robot. It returns to standby. 
The robot goes into autonomous mode. 
The robot returns from autonomous into listening mode. 

Translate 
Rotate

Robot Motion 
Translate Object Jointly 
Rotate Object Jointly 

The robotic gripper rotates left, right, up, down, clockwise, counter-clockwise. 
The user and the robot move a jointly held object to a specifc location. 
The user and the robot rotate a jointly held object by a specifc angle. 

The robot moves left, right, up, down, forward, backward. 

Pick Up Object 
Put Back Object 

Object Manipulation 
Take Over Object 
Hand Over Object 

The robot picks up an object. 
The robot puts an object down on the table. 
The user takes over an object from the robot. 
The robot takes over an object from the user. 

Emergency Stop The user intervenes the robot’s action. It stops immediately. 
Handling Emergencies 

Get-out-of-my-way The robot moves out of the user’s view. 

Table 1: The list of 14 referents, their descriptions, and assigned groups. The list refects a range of referents for basic control, 
to navigate the robot, manipulate objects, and handle unexpected emergency situations. 
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3.4 Participants 
We recruited 14 voluntary participants (7 female, 7 male, 0 diverse; 
M = 23.5 y; SD = 7.0 y; 13 right-handed, 1 left-handed) for the study. 
They received a compensation of 15 Euros. Participants had vari-
ous cultural backgrounds (Europe, Middle East, Far East, Central 
America). Their occupations included pupil, secretary, pharmacist, 
researcher, and students in law, education, cultural sciences, phar-
macy, computer linguistics, data science and artifcial intelligence. 
One participant was experienced in interaction design and imple-

mentation of of-body robotic arms. 

3.5 Data Analysis 
We analyzed the video recordings inductively and iteratively. To 
this end, we frst transcribed participants’ verbatim statements and 
all signs and variations through textual descriptions of the exact 
sign they demonstrated. This resulted in a total amount of 635 signs. 
Each participant suggested an average of 3.2 signs per referent (SD 
= 0.8), and a total between 30 and 75 gestures (M = 45.4, SD = 11.9). 
After merging identical or similar suggestions (e.g., pointing with 
the index fnger and with the full hand were considered similar), 
we ended up with 197 unique signs. We then fltered for signs that 
were suggested by more than one participant or were a participant’s 
favorite. This consensus threshold of two as introduced by Morris

[38] has been proven useful in other elicitation studies where the
number of proposals from each participant was not fxed [41, 43].
This left us with 122 signs. Subsequently, we conducted a qualitative
content analysis following fexible coding approaches [15, 30, 65].
These build on Grounded Theory to code data, but difer from
it by taking into account modern tools that allow for a simpler

arrangement of data, and in turn for more rigorous and fexible
analysis. In contrast to Grounded Theory where small codes are
merged into bigger concepts, one starts by coding big indices of
data and gradually refnes them. In our analysis, we classifed each
of the 122 user-defned signs based on the following dimensions:

Body parts, input modality (adapted from [21]), complexity [55],
input area (adapted from [52]), form and fow [55, 77]. We report
on those dimensions for contextualization in the results section.

4 RESULTS 
In the following, we investigate what signs the participants have 
defned. We start with an overview of what body parts, input modal-

ities, and locations are preferred for interaction. Next, we analyze 
more closely what are the preferred signs for each referent, with free 
hands or hands occupied, and identify what strategies are used for 
controlling robot motion. Finally, we discuss what are main sources 
of inspiration that the participants drew from when defning signs. 

4.1 Taxonometric Breakdown: Body Parts, 
Input Modalities, and Input Areas 

Body Parts. Figure 3 depicts the distribution of body parts that
participants have used for producing the signs. Even though partici-
pants could use any body part for interaction, they most frequently 
suggested using the upper limb (47 %), with fngers and hands used 
in 31 % of all signs, and arms used in 16 %. This confrms fndings 
from the literature on interaction with of-body robots [47, 51, 59]. 
This was followed by head and eyes (17 %). The directional mobility 

of the head and eyes make them a potentially useful alternative for 
settings where users cannot or do not want to use their hands. The 
lower limbs (feet and legs) were used in 10 %. 

Figure 3: Body parts used for the user-defned signs. Most 
frequently used are fngers/hands, then arms and eyes/head. 

Input Modalities. To code the input modalities, we used Hertel et
al.’s taxonomy for AR [21], as it best refects all multimodal inputs 
that occurred in our study, whilst most other taxonomies are bound 
to specifc technologies, or were too coarse to capture our needs. 
We categorized input modalities either as ’Touch’ (contact between 
any type of surface and a body part), ’Gaze’ (directional indications 
through eye or head motions), ’Gesture’ (uninstrumented motion of 
a body part which is neither ’Touch’ nor ’Gaze’), ’Voice’, or ’Brain-
Computer Interaction (BCI)’. We summarize signs that involve 
various classes as ’Mixed’. Our results show that the majority of 
user suggestions for all referents either involve a contact with a 
surface (’Touch’, 36 %) or uninstrumented body motions (’Gestures’, 
38 %). Touch was primarily performed with hand motion (58 %), 
but also with the arm (17 %) or with feet or legs (16 %). Gestures 
were mainly performed with arms (27 %) or hands (26 %), and less 
frequently with head or eyes (13 %), or feet or legs (9 %). 

However, the frequency of input modalities strongly varies for 
referents. Figure 4 depicts for each referent the percentage of all 
user-defned signs that belong to one input modality, separately 
for hands-free and hands-occupied settings. We see that ’Touch’ is 
particularly dominant for basic control, and handling emergencies,
particularly when hands are free. In contrast, ’Gesture’ is dominant 
for robot motion and object manipulations.

’Gaze’ is suggested frequently for robot motion (> 17 %) and pick
Up (23 – 44 %). Contrary, the use of ’Voice’ was mostly suggested 
as a modality to handle emergencies, or as an abstract method to 
activate or deactivate the robot (9 % each). Surprisingly, abstract 
sounds were also frequently suggested for translatory and rotational 
motions of the robot (9 % – 17 %). 

A distinct property of WRAs is that they can support the user 
also in settings where their hands may be occupied, for instance by 
holding an object, or when working with tools. This implies that 
for such settings, additional constraints need to be met: Any sign 
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must be compatible with the user’s manual activity. To investigate 
preferred interactions under this constraint, we split the set of user 
suggestions into a subset of signs compatible with occupied hands. 

When hands are occupied, signs involving ’Touch’ are frequently 
replaced by ’Gesture’, particularly so for those referents that have 
shown very frequent use of ’Touch’ in hands-free. Also ’Gaze’ is 
considerably more frequently used when hands are occupied, par-
ticularly for controlling robot motion and for picking up objects. 

Handling Emergencies

Object Manipulation

Robot Motion

Basic Control

Take Over

Hand Over

Pick Up

Put Down

Translate

Translate
Jointly

Rotate
Jointly

Rotate

Free Hands                               Occupied Hands

Activate

Release
Control

Retain
Control

Deactivate

Emergency
Stop

Get-out-of-
my-way

Voice BCI MixedGesture GazeTouch

Figure 4: Distribution of input modalities for each referent, 
divided by hands-free and hands-occupied. ’Touch’ and ’Ges-
ture’ are frequently suggested when hands are free. ’Gesture’ 
and ’Gaze’ often replace ’Touch’ when hands are occupied. 

Input Areas. We analyzed the location of touch contact for the 
’Touch’ modality: on-robot (touching the robotic arm, gripper, or 
the harness), on-body (two body parts touching each other), on-
surface (touching any passive surface, e.g., the cube, table, or the 
foor) or on-device (touching any external device). Figure 5 shows 
the distribution of input areas for ’Touch’. By far most ’Touch’ 
instances were performed on-robot (45 %). Lastly, on-surface (e.g., 
tapping on the cube) and on-body (e.g., clapping the feet against 
each other) were frequently used input areas (20 – 23 %). External 
devices (11 %) were rarely suggested. 

quently interactions with external devices. 

Figure 5: Input areas of user-defned ’Touch’ signs. Most 
frequently suggested is input on the robotic arm, least fre-

4.2 Preferred Signs 
We gauged user preference in more detail by asking participants to 
select one preference for each referent (out of the unlimited set of 
their propositions) for both, hands free and hands occupied. Table 2 
lists the 3 most preferred signs for each referent when hands are free 
and when hands are occupied. To identify the level of consensus 
between participants’ suggestions, we calculated agreement rates 
for all suggestions using the modifed agreement rate introduced 
by Vatavu et al. [70]: 

|� | |�� | 1

AR(� ) = )2 − |� | − 1 
Σ�� ⊆� ( |� | |� | − 1 

Here, � refers to the referent for which we compute the agreement 
rate AR(� ), � is the set of all signs elicited for � , and �� is the ��ℎ 

subset of identical signs in � . The results are shown in Table 2. 
Agreement rates ranged from 0.02 (low agreement, AR ≤ 0.1) to 
0.35 (high agreement, 0.3 ≤ AR ≤ 0.5). The rather low agreement 
rates are a natural result of the unlimited gesture production and 
emphasize the exploratory character of the study. Despite the rather 
low agreement rates of the suggested signs, we observe that partic-
ipants share considerable agreement on what signs they prefer. We 
now present the most frequently preferred signs: 

4.2.1 Basic Control. Referents for basic control of the robot’s func-
tionality comprise activation, deactivation, release Control 
and retain control. For free hands, the most preferred sign for 
all four referents is a discrete, static touch of the robotic arm, per-
formed either with the fnger or the full hand (43 %). It resembles 
a conventional touch gesture on or with a device. Other preferred 
options in the top 3 rankings involve basic, discrete actions like 
clapping or blinking with the eye (both 14 %), which were chosen 
because of their ease, speed, and comfort. 

When hands are occupied, participants tend to replace touch-
based interaction by abstract signs. All these signs have in common 
that they do not require exhaustive body motions, but are simple 
and fast. For instance, to activate the robotic arm, 21 % of the 
participants prefer to make a sound with the vocal chords, whereas 
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Free Hands Occupied Hands 

Referent � AR(� ) Top 3 Signs AR(� ) Top 3 Signs 

Activate 
0.07 

Tap robot with hand (43 %) 
0.06 

Make sound with vocal chord (21 %) 
Clap hands (14 %) Blink with eyes (14 %) 
Blink with eyes (14 %) Brain signal (14 %) 

Deactivate 
0.08 

Tap robot with hand (21 %) 
0.04 

Make sound with vocal chord (14 %) 
Make sound with vocal chord (7 %) Brain signal (14 %) 
Brain signal (7 %) Blink with eyes (7 %) 

Release Control 
0.03 

Tap robot with hand (21 %) 
Do task oneself, robot takes over automatically (14 %) 0.04 

Stamp with one’s foot (14 %) 
Look at two objects sequentially (7 %) 

Clap with hands (14 %) Stare at object, nod to confrm (7 %) 
Retain Control 

0.04 
Tap robot with hand (29 %) 

0.06 
Stamp with one’s foot (36 %) 

Clap hands (7 %) Clap feet against each other(14 %) 
Stamp with one’s foot (7 %) Shake head (7 %) 

Translate 
(Object held by robot) 0.05 

Robot follows arm at fxed distance (14 %) 
Use the hand to drag the robot to target (14 %) 
Robot imitates directional motion of head/eyes (7 %) 

0.06 
Robot imitates directional motion of head/eyes (21 %) 
Robot moves one unit per head tilt (7 %) 
Map vocals to directional motions (7 %) 

Rotate 
(Object held by robot) 0.09 

Gripper imitates tilting of fngers/hands (43 %) 
0.21 

Robot imitates directional motion of head/eyes (21 %) 
Gripper rotates one unit per hand tilt (7 %) Robot imitates directional motion of foot/leg (14 %) 
Rotate index fnger for rotation, point to gripper target 
mid-air to yaw or pitch (7 %) 

Map vocals to rotational directions (7 %) 

Translate 
(Object held jointly) 0.12 

Follow user’s lead propagated through object (36 %) 
0.23 

Follow user’s lead propagated through object (43 %) 
Robot imitates directional motion of head/eyes (14 %) 
Robot imitates directional motion of upper body (7 %) 

Use free hand to drag the robot to the target (21 %) 
Robot imitates directional motion of head/eyes (14 %) 

Rotate 
(Object held jointly) 0.18 

Follow user’s lead propagated through object (36 %) 
0.35 

Follow user’s lead propagated through object (43 %) 
Gripper imitates tilting of free hand (21 %) Robot imitates tilting of head (14 %) 
Gripper imitates tilting of head (14 %) Robot imitates tilting of foot/leg (7 %) 

Pick Up Object 
0.05 

Robot follows arm at fxed distance, open/close hand 
to open/close gripper (21 %) 0.09 

Stare at object (14 %) 

Use hand to drag robot close to the object (7 %) Stare at object, nod to confrm (7 %) 
Touch object (7 %) Stare at robot and object sequentially (7 %) 

Put Back Object 
0.02 

Robot follows arm at fxed distance, open/close hand 
to open/close gripper (14 %) 0.10 

Make sound with vocal chord (14 %) 

Move robot to target with hand/eye motions, blink 
eyes to open gripper (7 %) 

Use hand to drag robot to target and tap robot (7 %) 

Touch target (7 %) Stare at target, blink eyes to confrm (7 %) 
Take Over Object 
from Robot 0.03 

Robot follows arm at fxed distance, open/close hand 
to open/close gripper (14 %) 0.04 

Hold free hand out open (21 %) 

Hold free hand out open (14 %) Stare at target (7 %) 
Stare at target (14 %) Pull cube out of gripper (7 %) 

Hand Over Object to 
Robot 0.02 

Robot follows arm at fxed distance, open/close hand 
to open/close gripper (21 %) 0.04 

Shake object (21 %) 

Shake object (14 %) Stare at object (7 %) 
Stare at object (7 %) Stare at robot and object sequentially (7 %) 

Emergency Stop 
0.07 

Touch robot with the hand (43 %) 
0.06 

Make sound with vocal chords (29 %) 
Move hand in robot’s way w/o touching it (29 %) Stamp one’s foot (29 %) 
Make sound with vocal chord (14 %) Move whole body back (14 %) 

Get-out-of-my-way 
0.07 

Push robot away with the hand (43 %) 
0.05 

Shake head (14 %) 
Wave hand aside mid-air (’go away’) (14 %) Make sound with vocal chords (7 %) 
Tap robot with the hand (7 %) Rotate upper body (7 %) 

Table 2: The table contains the agreement rates and the 3 most preferred signs for each referent (1) when hands are free and (2) 
when hands are occupied. For each sign, we additionally indicate the percentage of people who preferred this sign in brackets. 

others suggest to resort to direct BCI. To release and retain control, 
participants preferred to stamp with one’s foot onto the ground (14 
% and 36 %), similarly how stamping can signal a human to stop. 
Further, we observe that the use of eye gaze, such as staring at one 

or multiple objects, is a frequently occurring pattern for release 
control to signal the robot to work autonomously on the object(s). 

4.2.2 Robot Motion. This group includes translate, rotate, and 
their human-robot collaborative counterparts translate jointly 
and rotate jointly. The most preferred signs for all referents in 
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this set involve kinemimic motions. These are direction inducing 
body motions which the robot follows; e.g., if the user’s hand moves 
to the right, the robot also moves in this direction. The most pre-
ferred body parts are the hand and the arm (> 50 % for all 4 referents 
in hands-free). For translate, participants prefer that the robot 
continuously follows their arm at a fxed distance or they manually 
drag the robot to the desired position (14 % each). For rotate, the 
robot’s gripper should mirror the rotations of the human hand (43 
%). People particularly expressed the superiority of using hands 
and arms over other body parts like head or eyes, and feet or legs: 
“[using the hands,] that’s where you can give the most information. 
[One] can tell how fast, how slow, how far [the WRA should move]” 
(P7), “when you move your head, you do not see what’s here” (P2), 
“[using the foot] makes me instable” (P7). 

Whilst hands were dominant for hands free, they were replaced 
in hands-occupied settings by body parts with similar mobility. For 
translate and rotate, at least 21 % of participants preferred to use 
the head. For translate jointly and rotate jointly, users prefer 
to mediate the motion through the object which they hold jointly 
with the robot (36 % each). This strong user preference emphasizes 
that moving the robot through motions which are mediated through 
a jointly carried object is a desirable input strategy. 

4.2.3 Object Manipulation. The set of object manipulations in-
volves pick Up, put Down an object, and their collaborative coun-
terparts take over from robot and hand over to robot. More 
than half of all suggested signs (56 %) are composed of at least two 
separate actions, for instance one action to move the robot to the 
target followed by a second action to make the robot use the grip-
per or to confrm the selected target. In contrast, other proposed 
actions are atomic, such as touching, pointing, or staring at the 
target. The most preferred sign for all four referents is to manually 
navigate the robot to the target, followed by using one’s hand to 
mimic how the robotic gripper opens and closes (14 – 21 %). For 
take Over From Robot, atomic actions were equally preferred, 
such as holding the non-dominant hand out open while waiting for 
the robot to put the object into the hand (14 %). 

Whilst the most preferred signs mainly involve composed hand 
and arm motions when hands are free, participants preferred atomic 
signs performed with the head or eyes when hands are occupied. 
For pick up, for instance, users preferred staring at the object of 
interest (14 %) and variations similar to this command, such as 
confrming the selection through nodding or staring at the robot 
after selection (7 % each). For put down, 14 % preferred making a 
sound with the vocal chords. 

4.2.4 Handling Emergencies. Referents to handle emergencies in-
volve emergency stop and get-out-of-my-way. Similar to basic 
control, the most preferred signs for handling emergencies involve 
a touch of the WRA (43 % each). However, for emergency stop, 
the sign is a more intense and aggressive touch, usually done with 
the entire hand that clearly signals the robot to stop moving. In 
contrast, the touch for get-out-of-my-way tends to dynamically 
push the robot away in the opposite direction of its movement. 

For hands-occupied, these signs were frequently replaced by 
foot motions, head motions, or the use of voice. The most preferred 
signs for emergency stop are using vocal chords and stamping 
(29 % each). For get-out-of-my-way, shaking the head (14 %) was 

slightly more preferred than the use of voice (7 %). Another strategy 
was to reposition or rotate one’s own body to rapidly move the 
robot out of the critical area, such that the robot “does not have the 
reach” (P3). Whilst the other suggestions would be also applicable 
to of-body robots, this strategy is specifc for body-worn robots. 

4.3 Controlling Robot Motion 
Human-robot interaction can comprise diferent levels of human 
control and robot autonomy. We observed that most signs suggested 
for basic control and handling emergencies comprise high-level user 
commands. These require the robot to understand and take action 
accordingly, such as automatic motion and path planning. Contrary, 
we found an outstanding variety of user strategies with varying lev-
els of user control for robot motion (translate, rotate, translate 
jointly, rotate jointly). To better understand the preferences, we 
clustered the suggested signs for robot motion based on their under-
lying concepts. This led to fve main strategies illustrated in Figure 
6: dragging, body remapping, body relocation, device-mediated 
control, and targeting. We detail on these in the following: 

Dragging. Dragging contains 22 % of all signs in the motion set. 
Dragging allows for direct control, as the user physically grabs an 
object with the hand and drags it onto the desired position. We 
distinguish between two types of dragging: 

(1) Robot Dragging (7 %): The user grabs the WRA with their 
hand and physically drags it to the target. This allows the 
user to have direct control of the robot and the object, while 
avoiding touching the (hot, dangerous, slippery, . . . ) object, 
or the need to carry the load of a heavy object. 

(2) Object Dragging (15 %): This strategy applies to situations 
in which the user and the robot jointly hold and move an 
object. With the hand holding the object, the user pushes 
or pulls the object in the desired direction, whilst the robot 
follows accordingly. In case the object is heavy, users addi-
tionally wished for the robot to take the main physical load 
of carrying the object, while they only provide indications 
through slight directional forces applied to the object. 

Body Remapping. Body remapping is the most frequently sug-
gested strategy, containing 53 % of all suggested motion-related 
signs in total. It allows for direct control, as motions of a body 
part are directly mapped to the motion of the robotic arm. We can 
further divide body remapping into the following sub-categories: 

(1) Imitation (7 %): The user moves their dominant arm and 
expects the robot to imitate their arm motions by following 
it at a fxed distance. This allows the user to continuously 
control the robot; however, the distance at which the robot 
follows the user must be determined prior to the interaction. 
This mapping also limits the robot motions of the robot to 
the distance covered by the user’s arm reach. 

(2) Continuous Remapping (40 %): The user continuously moves 
a body part, such as the foot, the head, or the upper body, 
whilst the robot maps the motions accordingly. In contrast 
to the previous strategy, however, the participants did not 
expect the robot to act on the same scale as the indicated 
body motions. Consequently, this requires that the scale 
must be defned by the user prior to the interaction. 
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(3) Discrete Remapping (6 %): This strategy is the discrete coun-
terpart of continuous remapping. Here, the robot moves one 
unit, e.g., per hand swipe or head tilt in the indicated direc-
tion. As these discrete indications are less similar to how 
humans naturally move than continuous indications, this 
strategy has been less frequently suggested. However, it of-
fers unique benefts for fne-grained control of the robot’s 
position and orientation. 

Body Relocation. Body relocating is a strategy specifc for on-
body robots. The user moves or rotates one’s own body to move 
or rotate the robot, respectively. With this strategy, the human 
has the highest level of possible control since there is no active 
robotic motion involved. Beside using body relocation to move the 
robot for coarse navigation, some participants also suggested it to 
handle emergency situations. As suggested by one participant, body 
relocation is most suited for coarse motions and longer distances 
in horizontal directions. However, as the body’s natural vertical 
reach is limited, the control over moving the robot up and down 
on a bigger scale is limited. These restrictions might explain why 
this strategy was only rarely suggested (2 %). 

Device-mediated Control. Seven percent of all suggestions in-
volve using an external device as a controller for robot motion. 
Suggestions comprised a portable joystick, a smartwatch, smart-

phone, or a remote control. Hereby, users indicate directions, e.g., 
through directional swipes or buttons which are mapped to direc-
tions. This strategy is easy to use because users are already familiar 
with it, e.g., from gaming consoles, and is commonly implemented 
for the control of robotic arms [1, 16, 44]. However, this strategy 

may be the result of some legacy bias. It must be noted that map-

ping from (usually) two-dimensional input onto three dimensions 
of robot movement is less direct and desirable than other strategies. 

Targeting. Four percent of all suggestions are discrete, deictic 
signs, either executed through pointing to the target or by eye gaze. 
Since the user selects the target, but leaves path and motion plan-
ning to the robot, this strategy requires the highest level of robot 
autonomy. This allows for quick user commands which might be 
helpful in situations where the user is busy with another primary 
task. However, targeting has limitations to indicate a point of in-
terest in 3D. The raycasting model underlying indirect pointing or 
gaze is limited by occlusions and potential ambiguities. In contrast, 
direct touch-contact pointing to a location in 3D is non-ambiguous, 
but restricted by the user’s arm reach. Although frst approaches to 
enrich gaze with depth information to control a robotic arm already 
exist [60], the strategy remains challenging for 3D motions. 

Figure 6: We identifed fve strategies to control robot motion, ranging from direct physical control of the robot’s motion 
(dragging) to high-level selection of the desired target (targeting). 

4.4 Sources of Inspiration: Devices, Body, and 
Other Beings 

A closer analysis of the suggested signs and participants’ reasoning 
underlying their choice revealed three main sources of inspiration, 
which apply for both hands-free and hands-occupied situations: the 
interaction with already known devices, the naturalness of body 
motions, and the intuitiveness of interacting with other beings. 

4.4.1 Transferring Device-Specific Metaphors onto the Robot. Many 
suggestions involved signs performed on the robot, as the robot’s 
proximity to the body makes them comfortable. People tend to 
combine these physical afordances of the WRA with known inter-
actions from other devices. We found that this combination makes 
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the interaction with the robot easy to use and remember. Specif-
cally, we observed that touching the robot in the context of basic 
control was commonly associated with pressing a button or a touch 
sensor on the robot: “just like a phone” (P6) or “like a remote con-
trol” (P14). Similarly, for handling emergencies, several participants 
suggested touching the robot to stop and compared this to sliding a 
hand in-between closing elevator doors (P2) or in-between a closing 
car window (P1), which would stop automatically as soon as they 
detect a human hand. 

4.4.2 Mapping Body Motions onto the Robot. Participants lever-
aged the ease and directness of body motion for controlling the 
robot, particularly for referents within robot motion and object ma-
nipulation. Participants explained that a mapping of body motions 
to the robot improves the feeling of control, as it feels “like [their] 
hand was the robotic arm” (P12). Ten participants explicitly stated 
that the intuitiveness and naturalness of using one’s own hand 
makes this type of interaction particularly easy to learn and use. 

4.4.3 Inspiration from Human-Human and Human-Animal Interac-
tions. If not preferred to control the robot through body remapping, 
many gestures for collaborative tasks were inspired by real-life 
interactions with people or pets. For instance, to hold the hand out 
open or move the object close to the robotic gripper resembles how 
one would hand or take over an object from another human: “just 
like for normal people. When I give something to a colleague: I 
hand it over to him [...] and he just takes it in his hand” (P9). To 
handle emergencies, many participants took inspiration from their 
human instinct to push an object away when it gets into the way, or 
to generate an audible warning signal (through stamping or vocal-
ization) “which is a human sign because one also knows stamping 
when something should stop” (P9) or “like scaring away a cat” (P1). 
Similarly, signs such as pulling an object out of the robot’s gripper 
and shaking the object were associated to a playful experience with 
a dog, indicating “here is your toy” (P3). 

5 DISCUSSION AND DESIGN IMPLICATIONS 
From the above quantitative and qualitative fndings, we derive the 
following implications for the design of interactions with a WRA. 

5.1 Input Modalities and Gestures 
The study results show versatile strategies of interaction with a 
WRA, including touch, gesture, gaze, and voice. However, two 
modalities clearly stand out: touch and mid-air gestures. Firstly, 
touch is predominantly suggested for basic control and handling 
emergencies, and most frequently performed on the robotic arm. 
The design of touch interactions that are easy to use and remember 
can draw inspiration from existing devices, but also from tactile 
interaction with human collaborators. It is noteworthy that the 
proposed touch interactions are of rather coarse-grained character, 
implying they can be performed when wearing gloves. Secondly, 
mid-air gestures are dominating for controlling robot motion and 
manipulating objects. Here, our study results show a broad variety 
of strategies to navigate the robot. These range from discrete, high-
level actions (e.g., pointing at the target), to continuous interaction 
with a high level of control and specifc for on-body robots (e.g., 
moving one’s own body to relocate the body-worn robot for coarser 

motions). The most frequently suggested technique, however, in-
volves remapping one’s own body motions to robot movement. 
Such direct remapping makes robot control very easy as it is based 
on natural human behavior: The naturalness of mapping learned 
motor motions onto other body parts is a well-studied phenomenon 
in neuroscience research [64]. Lastly, to move an object together 
with the robot, the easiest technique is that the robot follows the 
user’s lead which is propagated through the jointly held object. 

In cases when both hands are occupied by the primary task, 
sounds (e.g., through voice or stamping one’s foot) are preferred 
for basic control and in emergency situations, whereas head and 
eye gaze is a preferred input technique for robot motion. 

In consequence, we can cover a large subset of referents with 
at least one of the 3 most preferred signs by combining touch and 
gaze as input modalities. This accounts for all referents when hands 
are free and for 11 out of the 14 referents when hands are occupied. 

5.2 Robot as Extension of the User’s Body 
It is noteworthy that many of the proposed signs share similarities 
with interactions already known from of-body robots, such as 
tactile interactions [10], or body remapping for controlling drones, 
e.g., [47]. This suggests it may be possible to establish a common 
gesture language for of-body and on-body robots, an interesting 
question for future work. 

However, our results also highlight important diferences be-
tween robotic arms that are worn on the body and those that are 
not: the WRA moves together with the human body, no matter 
whether the user intends it or not. This calls for diferent modes of 
how the robot can respond to body movements. First, the robot’s 
end efector could be fxed in space, such that its world coordinates 
do not change when the user moves. This is important for con-
struction or assembly tasks where the robot needs to operate at a 
fx location or steadily hold an object while the user moves about 
for a primary task. Alternatively, the robot’s end efector could be 
fxed on body, such that its world coordinates change along with the 
user’s body movements. The latter can be used as a fast and direct 
means for moving the robotic arm, by rotating one’s upper body, 
by stepping side-ways, or leaning forward and back. We anticipate 
this will be particularly helpful for coarse and rapid robot motion 
that provides a spatial reference, whilst the precision of robotic 
actuation is better suited for fne motion as required in precise 
manipulative actions. This asymmetric division of macrometric 
and micrometric control resembles a serial assembly of two motors 
as discussed by Guiard and allows to extend the kinematic chain 
model he proposed for bimanual interactions accordingly, through 
a chain formed of the human body and the robotic arm [19]. 

It is a well-known phenomenon that wearable devices, tools, and 
objects might map to the user’s body schema after a prolonged use 
and are perceived as an extension of the own body [6, 37, 42]. Partic-
ipants’ quotes (e.g., “as if [their] hand were the robotic arm” (P12)) 
and suggested strategies (e.g., shifting the body to move the robotic 
arm) suggest that also the WRA could ultimately be perceived as an 
extension of users’ own bodies, given that interactions are designed 
naturally. However, the extent to which this is desirable from a 
user-perspective remains subject of future studies. 
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5.3 On-Body Robots as Tool and Collaborator 
Our fndings demonstrate that on-body robots can and should take 
a diferent role depending on the task. This comprises the role of a 
collaborator which is able to react to high-level commands without 
requiring further user guidance, able to understand implicit clues 
(e.g., removing a cube out of the robotic gripper to make it stop 
building the tower), or to learn user-specifc behavioural patterns 
over time. But the robot can also take the role of a purely functional 
tool which allows for precise and direct control, not involving any 
intelligent decisions or automatic behaviour. Our observations con-
frm prior discussions in literature that these roles are not exclusive, 
or binary. Rather, the robot should act on a spectrum of auton-
omy [39, 63]. Participants of our study have even suggested signs, 
which combine both collaborative and purely functional traits. An 
example comprises manually dragging the robot towards the object, 
followed by holding it there for some time to ’show’ the object to the 
robot, expecting the robot to understand it should pick up the object 
on its own. These non-exclusive design patterns for the interaction 
with on-body robots might allow designers to overcome prevailing, 
purely functional vs. anthropomorphism- or zoomorphism-inspired 
design strategies [20], and ultimately create interactions that are 
in-line with the hybrid character of WRAs. 

5.4 Sensing Interactions with WRA 
The interactions proposed by participants of our study can be cap-
tured using various sensor technologies, either deployed on the 
robot, or on the user, or both. 

Augmenting robots with a sense of touch, through buttons or 
touch sensors up to interactive skin covering the full robot, has been 
of interest for a long time [10]. For our suggested touch interactions, 
a low resolution touch sensor matrix which is attached around the 
robotic arm and easily reachable for the user is sufcient. Hereby, 
we could use a capacitive sensor matrix, e.g., as suggested in [68]. 
Adding continuous force sensing, instead of touch contact alone, al-
lows for capturing directional forces. Alternatively, motions which 
involve coarse-grained forces exerted on the robotic arm, such as 
dragging the robot onto the desired position, can also be sensed by 
torque sensors deployed inside the joints of the robot. 

Various signs within the top three of both hands-busy and hands-
free conditions involve discrete gestures, such as opening and clos-
ing the fst, rotating the hand, or stamping. These can be captured 
using body-worn sensors. Notable examples include vision-based 
approaches with body-worn cameras [9, 24, 25], sensing with Iner-
tial Measurement Units [76, 80], or through EMG signals [46, 67]. 
To track continuous limb motions, such as translatory or rotational 
motions of the hand, arm, head, or foot which the robot should 
mimic, IMUs are a straightforward choice. However, the pure use 
of IMUs attached to the user’s body is not suited for precise con-
trol control because of accumulating errors and delays [56]. Here, 
vision-based approaches are most promising. 

It is still an open research issue to reliably detect gestures and 
limb motions only through robot-integrated sensors [4], and de-
tecting gaze is even more demanding. We can, however, expect 
that with technological advances, user’s limb motions can be accu-
rately captured through robot-integrated fsh eye cameras or radar. 
Also, given the robot is mounted on the body, it may be able to 

detect body motions with built-in IMUs, just from the way it moves 
with the body. Future research should investigate robot-deployed 
technologies for sensing user interactions, to ease the ergonomic 
deployment of WRAs for everyday activities. 

5.5 Limitations 
In our study setup, participants stood in front of a table in a quiet 
environment. The preferred signs and interaction strategies might 
vary when interacting with the arm whilst moving, sitting, or with 
external bystanders nearby. This should be subject to future studies. 

We used a light-weight, passive WRA prototype, which was 
manually moved either by the experimenter or the participant. Al-
though the prototype fulflls common design characteristics of a 
WRA in terms of mounting location, dimensions, and workspace, 
its non-functionality might have infuenced participants’ behaviour 
as they did not need to fear any unexpected behavior and were not 
confronted with the true strength and speed of a WRA. Also, the 
exact way a sign is executed might vary with the WRA’s detailed 
link-and-joint-based structure. Whilst this might afect the WRA’s 
joint space and the angle at which the end efector is approaching a 
target, the absolute position of the end efector and the user’s over-
all goals, physical abilities, and preferences stay the same. Thus, we 
believe that our results generalize to more complex WRAs. Further-
more, the WRA was designed to have a reach similar to that of a real 
human arm. Signs might vary for controlling a robotic arm with an 
extended reach or one designed for microscopic manipulation. 

We opted for abstract cubes instead of concrete objects to get 
a principled understanding of underlying models and interaction 
strategies that generalize beyond a specifc application domain. Sim-

ilarly, we chose domain-agnostic referents which can be transferred 
to various application cases with physical objects. Evaluating the 
individual efects of diferent object sizes, weights, and afordances 
are beyond the scope of this study and subject to future work. 

During our study, we observed that our prototype occasionally 
hindered movements of the human arm and vice versa. Our study 
did not investigate this aspect further. Future work should discuss 
strategies to resolve such collisions in a shared workspace, including 
considerations of where the WRA should be attached to the body. 

Lastly, our results showed that BCI was a rarely suggested input 
modality. This might be a consequence of our study method, as 
unlike gestures, users cannot demonstrate BCI to the experimenter 
easily. The extent to which BCI is a desirable technique to control 
a third, robotic arm should be investigated in future work. 

6 CONCLUSION 
This paper contributed fndings from the frst elicitation study for 
the interaction with WRAs. We systematically investigated user 
preferences when hands are free and occupied and provided a com-

prehensive list of signs preferred by the participants. Our analysis 
revealed that overall users prefer mid-air gestures performed with 
hands and arms to navigate the robot and manipulate objects, and 
on-robot hand gestures for all other tasks types, such as physically 
pushing away the robot in an emergency. When hands are occupied, 
users generally preferred sounds for basic control and in emergency 
situations, such as stamping, whereas they proposed head and eye 
gaze as a desirable mitigation strategy to navigate the robot. When 



CHI ’23, April 23–28, 2023, Hamburg, Germany Muehlhaus et al. 

user and robot jointly hold an object, it was found most desirable 
to control the robot by moving the object and expecting the robot 
to follow the user’s lead. Our fndings reveal three main sources of 
inspiration. For basic control, inspiration can be drawn from the 
interaction with existing devices. To handle emergencies and for 
collaborative tasks, interactions can be inspired by human-human 
interaction, whereas body motion is a natural way to steer the ro-
bot. Our fndings also confrm that body-worn robots should ofer 
diferent levels of autonomy which range from directly controlling 
the robot like a tool all the way to collaborating with an intelligent 
partner that is able to understand high-level commands or even 
implicit cues. We derived various implications for sensing technol-
ogy, which can be deployed on the robot, or on the human user. 
We see our fndings as a frst step toward immersive interactions 
with WRAs that refect on user’s behavior. Future research can use 
our results as a starting point to understand how WRAs should be 
designed to best support users in their daily lives. 
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A STUDY DETAILS 
Before starting the study, we introduced the participants to Wear-

able Robotic Arms and the goal of the study by reading out the 
following text: 

“A Wearable Robotic Arm is a device that is attached to 
your body and can act like a third hand that helps you in 
everyday life. Imagine, e.g., a scenario where your hands 
are busy holding some packages whilst you need to open 
a door, or you are cooking and need to move a hot dish. 
A robotic arm might support you in such situations. We 
aim to understand how people would want to control 
and interact with such a wearable robotic arm. However, 
in our study, we don’t consider real-life scenarios such 
as the ones mentioned, but a more abstract setting where 
we use cubes for interaction. The cubes are chosen as 
neutral representations of our real-world examples.” 

Below, we list the descriptions that we read out to the user. 

Task 1: Activation. The robot is in standby mode and must be 
activated before it can follow any commands. How would you 
activate the robotic arm? 

Task 2: Deactivation. The robot is activated. You want to deac-
tivate it to make it go back into standby mode. How would you 
deactivate the robotic arm? 

Task 3: Translate. The robot is activated and holds a cube. You 
want to move the cube to this position (position was demonstrated 
by the experimenter) on the left/right, forward/backward, upward/ 
downward. How would you instruct it to do so? 

Task 4: Rotate. The robot is activated and holds a cube. You want 
to rotate the robotic arm by this angle (position was demonstrated by 
the experimenter) clockwise/counter-clockwise, forward/backward, 
left/right. How would you instruct it to do so? 

Task 5: Pick Up Object. The robot is activated. There are several 
white cubes and one marked one on the table. You want the robot 
to pick up the marked cube. How would you instruct the robotic 
arm to pick up the object for you? 

Task 6: Put Back Object. The robot is activated and holds a cube. 
You want the robot to place it down somewhere on the table. How 
would you instruct the robotic arm to do so? 

Task 7: Translate Object Jointly. The robot is activated. You are 
holding the big cube in your left hand together with the robotic 
arm. You want to jointly move the robotic arm to this position 
(position was demonstrated by the experimenter) on the left/right, 
forward/backward, up/down. How would you instruct the robotic 
arm to jointly move the object to these positions? 

Task 8: Rotate Object Jointly. The robot is activated. You are 
holding the big cube in your left hand together with the robotic arm. 
You want to jointly rotate the robotic arm by this angle (position 
was demonstrated by the experimenter) clockwise/counter-clockwise, 
forward/backward, left/right. How would you instruct it to do so? 

Task 9: Take Over Object From Robot. The robot is activated and 
holds a cube. You want the robot to hand it over to your left hand. 
How would you instruct the robotic arm to do so? 
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Task 10: Hand Over Object to Robot. The robot is activated. You 
are holding a cube in your left hand. You want the robot to take 
over the object. How would you instruct the robotic arm to do so? 

Task 11: Release Control. The robot is activated. Your goal is to 
get a tower of cubes where all cubes on the table are stacked one 
onto the other. However, this is a tedious task and you want the 
robotic arm to do the work for you autonomously. This means 
the robotic arm should stack the cubes without your help all by 
itself. The robot knows the task of building a tower out of cubes. 
Furthermore, it knows where all cubes are located on the table and 
how to move and stack them. How would you make the robot start 
stacking the cubes autonomously? 

Task 12: Retain Control. The robot is activated. The robot is stack-
ing cubes on the table autonomously. However, you want the con-
trol over the robot back such that it stops working by itself but 
listens to your commands again. How would you instruct the robot 
to stop working autonomously? 

Task 13: Emergency Stop. The robot is activated. There is a stack 
of cubes on the table. The robot is in autonomous mode and sud-
denly moves into the direction of the cubes, risking knocking over 
the stack. You want it to stop immediately. How would you instruct 
it to do so? 

Task 14: Get-out-of-my-way. The robot is activated and is moving 
in front of your face, blocking parts of your view as it is invading 
your workspace. You want the robotic arm to move out of your 
way. How would you instruct it to do so? 
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