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Figure 1: (a) The SoloFinger concept: while grasping an object, one can perform a single-fnger microgesture while other fngers 
stay idle. (b) These easy and rapid-to-perform gestures exhibit a distinct movement signature, which is not present during daily 
actions. This yields a robust gestural input compatible with versatile object geometries and actions. 

ABSTRACT 
Using microgestures, prior work has successfully enabled gestu-
ral interactions while holding objects. Yet, these existing methods 
are prone to false activations caused by natural fnger movements 
while holding or manipulating the object. We address this issue 
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with SoloFinger, a novel concept that allows design of microgestures 
that are robust against movements that naturally occur during pri-
mary activities. Using a data-driven approach, we establish that 
single-fnger movements are rare in everyday hand-object actions 
and infer a single-fnger input technique resilient to false activation. 
We demonstrate this concept’s robustness using a white-box classi-
fer on a pre-existing dataset comprising 36 everyday hand-object 
actions. Our fndings validate that simple SoloFinger gestures can 
relieve the need for complex fnger confgurations or delimiting 
gestures and that SoloFinger is applicable to diverse hand-object 
actions. Finally, we demonstrate SoloFinger’s high performance on 
commodity hardware using random forest classifers. 
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CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); Interaction techniques; Gestural input. 
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1 INTRODUCTION 
Recent work has identifed microgestures as a promising means 
for enabling interaction while holding everyday objects, such as 
a pen, a hammer, or a steering wheel [38, 58, 72, 74]. These small 
and rapid gestures (e.g., a tapping or a sliding movement) are one-
handed and can be performed directly on objects, notably with 
the same hand that is holding the object. For this property they 
have been referred to as grasping microgestures [58]. Such gestures 
might be used to replace the wake word in virtual assistant spaces 
(e.g., "Alexa" or "Hey Google") [48], but can also ofer benefts in 
a myriad of applications, ranging from controlling mobile devices 
when on the move and hands are busy, to controlling systems in 
healthcare contexts [8]. 

While performing quick and convenient gestures on handheld 
objects is compelling, gestures risk conficting with fnger move-
ments that might occur when adjusting ones grip or manipulating 
the object. As a result, a gesture recognizer might misinterpret 
natural fnger movements as an intentional input gesture and trig-
ger an unintended command; namely, a false activation. This is a 
challenging problem for designing and deploying microgestural 
interfaces. 

To the best of our knowledge, however, there is no prior work 
that systematically investigates robust gestures to perform while 
holding everyday objects. Previous work presented robust gestures 
for specifc devices, such as smartphones [35, 50, 52], tablets [57], 
and smart pens [23]. While these approaches perform well in their 
specifc contexts, a critical problem is their device-specifc behav-
ior. For example, a fipping gesture might be suitable for smart-
phones [52], but would not work while holding a cofee cup. Other 
work proposed using a robust delimiter gesture that must be per-
formed before doing the actual gesture [53]. Yet another approach 
could involve complicated movements that are unlikely to happen 
in everyday actions, such as a specifc movement sequence, spe-
cifc timing, or specifc fnger combination. In contrast, the goal of 
our work is to move beyond device-specifc gestures and ensure 
compatibility with a wide range of grasps and everyday actions, 
while avoiding the cognitive overhead of separate delimiters or 
complicated-to-perform gestures. 

We present SoloFinger, a concept addressing the problem of false 
activation while grasping everyday objects. The main fnding of 
this work is that simple fnger movements that are rapid, easy and 
elegant to perform can indeed function as robust microgestures 

while holding objects. We demonstrate that this holds true for 
diverse grasps, object geometries and everyday actions. 

SoloFinger leverages the insight that when holding and manip-
ulating objects fngers tend either to be static or to have multiple 
fngers move concurrently. Consequently a movement of a single 
fnger while other fngers remain idle stands out from everyday 
hand motions during object interaction (see Figure 1a and 1b). This 
opens up a space for performing robust yet easy-to-perform ges-
tures on everyday objects that do not provide interactive input 
options of their own. To methodologically validate this in the con-
text of hand actions and gesture design, we conducted extensive 
user studies and performed a series of data-driven analyses. As a re-
sult, we recommend 7 types of SoloFinger gestures performed with 
the thumb, index, or middle fnger, ofering overall 21 interaction 
options. 

We start by introducing the overall concept and demonstrate 
its principled feasibility. Specifcally, we introduce a metric that 
highlights the distinct behaviour of SoloFinger microgestures from 
everyday fnger movements. We also show the feasibility of per-
forming these gestures on diverse objects and with diverse grasps. 
Next, we empirically investigate in more detail the robustness of 
SoloFinger microgestures to false activation. We collected 7,488 
gesture trials. We systematically analyze these gestures as well as a 
pre-existing dataset comprising 933 trials with daily hand-object 
actions. To produce fndings that generalize beyond a specifc clas-
sifer implementation and can be interpreted by humans, we opted 
for a simple white-box classifer, based on thresholding. The results 
show that SoloFinger microgestures performed on 36 objects can be 
recognized with an average precision of 100% and recall of 88% (SD 
= 7) over three primitive gestures. We also show the technique’s 
resilience to false activation on the held-out dataset, which triggers 
false activation in only 51 out of 933 trials of actions performed 
with 36 objects. Notably, no false activation was found for 23 ac-
tions, while most cases of false activation occurred on extremely 
deformable or very small objects. 

Finally, we demonstrate a proof-of-concept system with a com-
mercially available virtual reality glove and a random forest clas-
sifer. This implementation can detect 7 types of SoloFinger mi-
crogestures performed with the thumb, index or middle fnger. 
Classifcation results without knowledge of the held object show 
an overall accuracy of 86% with a very low number of false acti-
vations (17 out of 800 trials). When the held object is known, the 
accuracy further increases to 89%, without any false activation in 
the collected dataset. 

In summary, our work makes the following contributions: 

• Concept: We propose the concept of SoloFinger microges-
tures—where one fnger moves intentionally while the others 
remain idle—as a means for rapid and convenient gestural 
input while holding an object that is robust to false activa-
tions. 

• Concept validation: To validate our concept, we perform 
a systematic data-driven analysis. We show that SoloFinger 
gestures difer considerably from everyday hand motions 
and, using a white-box classifer, demonstrate the concept’s 
principled feasibility for robust gesture detection. 

https://doi.org/10.1145/3411764.3445197
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• Proof-of-concept system: We demonstrate the real-world 
feasibility of our presented concept by implementing an 
end-to-end system with of-the-shelf hardware. 

• Dataset: We release two datasets of SoloFinger gestures 
performed by a total of 21 participants and captured using 
an OptiTrack optical motion capture system and a virtual 
reality data glove for 36 and 5 actions, respectively. This 
flls a gap in the existing literature by providing data about 
fnger gestures while grasping. The datasets are available at: 
https://hci.cs.uni-saarland.de/ research/ solofnger/ 

2 RELATED WORK 
Our work relates to prior work in enabling interaction with hand-
held objects, approaches to avoid false activations, and gesture 
recognition. 

2.1 Microgestures on Objects 
The vast majority of work on touch gestures is based on the as-
sumption that at least one of the user’s hands is free for interacting 
with the touch surface. A relatively small amount of work has in-
vestigated settings in which the user’s hands and fngers are busy 
with another task. Heo et al. [22] presented a taxonomy of such 
constrained scenarios, which illustrated that each type of constraint 
afords a diferent set of gestures. 

As discussed by Norman [43], diferent physical objects provide 
diferent afordances; therefore, it is important to consider grasp 
while designing microinteractions. Prior literature has identifed 
over 70 grasp types covering diferent perspectives, on the basis 
of tool design [55], task requirement [40], specifc domain [9], and 
several other factors [14]. A detailed survey of diferent grasp tax-
onomies can be found in [36]. 

Previous work investigated how intentional interactions should 
be designed when the hands are occupied. Fitzmaurice et al. con-
tributed seminal work with the concept of Graspable User Inter-
faces [15]. Graspables [65] presented grasp-recognition as an input 
medium. Wimmer presented the GRASP model to show how a 
grasp conveys meaningful contextual information [71]. Wolf et al. 
assessed the ergonomic factors and suitability of microinteractions 
in an expert study with 3 objects (steering wheel, pen and cash 
card) [72]. Other work has identifed gestures focusing on specifc 
objects and geometries, such as steering wheels [3], bike handles 
[11], textile-based cords [44], and pens [38]. More recently, Sharma 
et al. [58] focused on grasping microgestures through an elicita-
tion study and contributed microgestures for six grasp types and 
12 objects of various geometry. None of this work, however, has 
systematically investigated how to design microgestures that are 
robust against false activations. To address this gap, we present 
an empirically validated method to create comfortable yet robust 
microgestures for handheld objects that avoid false activations. 

Various sensing technologies have demonstrated that capturing 
microgestures with everyday objects is technically feasible, e.g., [2, 
21, 32, 37, 51, 56, 60, 63, 76]. We discuss the potential of several 
sensing techniques to realize our concept in Section 8.1. 

2.2 False Activation During Gestural Input 
Gesture detection errors can be classifed in two categories: false 
positive errors, which relate to triggering unintended actions, and 

false negative errors, where a recognition system fails to identify 
the intended gesture. In HCI, both these errors result in user frus-
tration and have direct implications on the adoption of a particular 
technology [69]. 

Some previous work has focused on designing explicit delimiter 
gestures to avoid false activations. These gestures are signifcantly 
diferent from non-intentional actions and are therefore robust to 
unintended input. One common application for such delimiter ges-
tures is switching between a gesture detection mode and another 
mode in which the gesture recognizer is not active. Through our 
literature review, we found two main categories of delimiter action 
for handheld objects: bimanual gestures, where the trigger action is 
performed with the non-dominant hand and, subsequently, the com-
mand is performed with the dominant hand [53]; and device-specifc 
trigger actions like DoubleFlip [52] that require a large rotation, 
or Active Edge [50] that uses squeezing to detect intentional ac-
tion on phone devices. WristRotate [27] presented a wrist rotation 
technique as a delimiter for smartwatches. Recently, BlyncSync 
[67] used multi-modal touch and blink gestures on smartwatches. 
A drawback of any delimiter action is the disruption in the user’s 
workfow: the user must frst perform the delimiter, and then the 
intended gesture. Also, compound fnger movements can be formed 
using Rhythmic microgestures [16]. More closely related to our 
approach, Le et al. [31] explored reachability and unintended input 
for a specifc grasp type with diferent phone sizes. From a tech-
nical standpoint, some machine-learning approaches have been 
utilized previously to reduce false positive rates [10, 29]. However, 
these techniques are applied after the design process of gestures. 
Secondly, they do not consider false positive reduction while per-
forming the gestures during hand-object interactions. Other eforts 
include engaging end-users in the design process of gestures to re-
duce the risk of confusing gestures with natural movement [58, 74]. 
Our contribution is to employ a data-driven approach to validate a 
set of intentional gestures, which are resilient to false activation 
on un-instrumented everyday objects and various grasp types. 

Our approach for designing gestures is inspired by work from 
Kawahata et al. [26], Magic 2.0 [28], and Gesture On [35], which 
compare gestures against a database of everyday actions in order to 
identify the ones most robust to false activations. We take a more 
general approach by investigating a large number of grasp types to 
design a gesture language compatible with many diferent objects. 
Our approach results in unique single-fnger motions with the same 
hand involved in holding the object. 

2.3 Gesture Recognition Techniques 
Recognizing gestures from sensor data can be framed as a classif-
cation task for a machine-learning model. In this work, we opted 
for two diferent approaches: white-box and black-box. A white-box 
model is a machine-learning technique that can be easily inter-
preted by a human. The advantage of such an interpretable and 
transparent system is that one can understand the decision process 
of the machine-learning model [34]. We therefore use it as a De-
sign Material [12] in our analysis to derive guidelines for future 
developers and designers of microgestures. 

In contrast, black-box models are too complex to allow a straight-
forward analysis of their learned decision-making. Interpreting 
such models is an active and open research question [1, 18, 25]. 

https://hci.cs.uni-saarland.de/research/solofinger/
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Figure 2: (a) SoloFinger microgestures are performed with a single fnger on an object, while holding it. (b) Tapping or diferent 
directional movements defne unique gestures that can be performed either with thumb, index, or middle fnger. 

Black-box models can, however, use their additional complexity 
to learn more advanced decision-making processes. This often re-
sults in better evaluation performance and is, therefore, usually 
preferred to achieve state-of-the-art results and for real-world de-
ployment [73]. We train and evaluate such a black-box model to 
show a proof-of-concept implementation of our concept. 

3 SOLOFINGER GESTURES 
The sophistication of the human hand allows for dexterous hand-
object interactions. Our fngers hold objects using a wide variety of 
grasps, and while manipulating objects our fngers move in versatile 
ways and diverse confgurations. Due to this impressive richness 
of movement patterns, it is challenging to defne unique gestures 
applicable across diferent grasp types and object geometries, yet 
mutually exclusive of everyday actions. We introduce the concept 
of SoloFinger microgestures that aim to stand out from everyday 
hand motions, hence reducing the likelihood of false activations. 

SoloFinger microgestures are conceptually based on the observa-
tion that during everyday hand-object interaction, multiple fngers 
tend to move concurrently, whereas it is rare that a single fnger 
moves extensively on the object while all others stay idle. This ob-
servation was informed by fndings that fnger movements tend to 
be highly correlated during object manipulation [20, 70]. Our work 
leverages this phenomenon. We ground our fndings on objects that 
do not contain movable elements, such as mechanical buttons or 
sliders. 

A SoloFinger gesture (Figure 2b) involves moving a single fnger 
by a considerable yet comfortable extent, while all other fngers remain 
static. It is performed while holding an object, with the same hand, 
and on the object itself. SoloFinger gestures are not limited to any 
specifc fnger. We recommend using the thumb, index, or middle 
fnger, as the ring and pinky fngers were shown to be less robust 
and also subjectively less preferable. 

This generic approach allows for defning diverse microgestures. 
For instance, these comprise tapping, moving a fnger forward, 
backward or sideways, or moving in advanced patterns, such as 
drawing a circle. Figure 2 (b) depicts the gestures we used in our 
studies. Performed with either thumb, index, or middle fnger, this 
leads to a total of 21 gesture options we have investigated. However, 
more SoloFinger gestures can be conceived. 

In the following, we will conceptually and practically validate 
the feasibility of our proposed concept. Our conceptual analysis 

is based on two datasets that we present in the next section. It 
validates two key assumptions that underlie SoloFinger gestures: 
extensive single-fnger movements are unlikely to happen during 
everyday hand-object actions, and SoloFinger gestures are compat-
ible with holding diverse types of objects in diverse grasps. Next, 
using a simple white-box classifer, we investigate the principled 
feasibility of gesture classifcation and show that SoloFinger ges-
tures create little false activation during diverse everyday actions. 
Finally, we demonstrate the practical feasibility by presenting a 
proof-of-concept implementation that uses commodity hardware. 

4 DATASETS FOR DAILY HAND-OBJECT 
ACTIONS AND SOLOFINGER 

We use a data-driven method to systematically validate our concept 
using two datasets: a baseline dataset ofering extensive coverage 
of everyday hand-object interaction, and a dataset of SoloFinger 
gestures that end users performed naturally using a wide set of 
grasps and actions. 

4.1 Dataset with Daily Hand-Object Actions 
We base our analysis of everyday object manipulation on a base-
line dataset made available by prior research. Garcia-Hernando et 
al. [17] created the frst benchmark dataset that provides precise 
information about hand joint positions and angles during an ex-
tensive range of hand-object interaction. It comprises data from a 
diverse set of 45 everyday object manipulation actions, performed 
with 26 objects. Data were captured using high-frequency mag-
netic sensors to avoid any obstruction between fnger contact and 
object surface. Information about hand joints and fngertips was 
then derived using inverse kinematics. The dataset contains 105,459 
RGB-D frames with 3D location of each of the 21 joints of a hand 
model. 

We use this dataset to verify our assumption that single-fnger 
movements are rare while grasping an object and for assessing 
false activations caused by SoloFinger gestures. Since our approach 
only focuses on handheld objects, we removed a subset of the 
actions from this dataset that did not involve grasping an object 
(performing a high-fve; shaking hands; pressing the buttons of a 
calculator; closing liquid soap). We also combined actions with very 
similar fnger motions and grasp types opening/closing juice and 
milk bottle; opening/closing peanut butter; and scratching/washing 
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36. Write35. Use Flash34. Unfold Glasses33. Toast Wine32. Tear Paper31. Take Letter 
from Envelope

30. Stir29. Squeeze 
Sponge

28. Squeeze Paper

27. Sprinkle26. Scratch, Wash 
Sponge

25. Scoop Spoon24. Receive Coin23. Read Letter22. Put Tea Bag21. Put Sugar20. Put Salt19. Prick

18. Pour Wine17. Pour Milk16. Pour Liquid 
Soap

15. Pour Juice 
Bottle

14. Open/Close 
Peanut Butter

13. Open/Close 
Juice, Milk Bottle

12. Open Wallet11. Open Soda Can10. Open Liquid 
Soap

9. Open Letter8. Light Candle7. Give Coin6. Give Card5. Flip Sponge4. Flip Pages3. Drink Mug2. Clean Glasses1. Charge 
Cell Phone

Figure 3: The 36 actions in our dataset of SoloFinger gestures cover diverse real-world objects and grasps. 

a sponge). We used the video data provided along with the dataset 
to inform these decisions. As shown in Fig. 3, after removal and 
consolidation, we are left with 36 diferent hand-object actions 
(95,788 frames). To use terminology consistent with our second 
dataset, we use the term “trial" to refer to the sequence of data 
recorded while one participant performs one action. 

4.2 SoloFinger Dataset 
Thus far, no studies have reported detailed hand data for single-
fnger movements on diverse grasp types. We therefore recorded a 
new dataset with hand movement data from study participants who 
performed SoloFinger gestures while grasping objects. Our focus 
here is to systematically investigate single-fnger movements on a 
wide variety of objects. However, to evaluate gesture recognition 
using a more sophisticated model with multiple gesture trials and 
variations, we collected another dataset as described in Section 7.1. 

4.2.1 SoloFinger Gestures. We centered this frst study on three 
most basic SoloFinger gestures. These comprise the primitive fnger 
movements of Flexion and Extension, as commonly used in the feld 
of biomechanics, and Tap as a discrete motion. These 3 primitive 
movements are illustrated in Fig. 2 (b, top row). For a baseline 
comparison, we also collected one trial of static Hold for every 
case in which the object was held in a static pose and no gesture 
performed. Before starting the experiment, we demonstrated these 
3 gestures on a cylindrical prop (which was not part of the set of 
objects used in the study) to familiarize participants with SoloFinger 
gestures. 

4.2.2 Actions. We used the same 36 hand actions as in the Hand-
Object Actions dataset (as shown in Fig. 3). We asked the partici-
pants to perform gestures while holding the object in a static pose. 

4.2.3 Participants. We recruited 15 participants. Not all trials were 
recorded from 2 participants due to technical reasons. Therefore, all 
subsequent analysis uses data from the remaining 13 right-handed 
participants (6 female) aged from 21 to 30 (median=27) from dif-
ferent professional backgrounds (engineering, law, literature). Par-
ticipants received a compensation of €20 for their participation. 
Before collecting data, we manually measured the hand dimensions 
of participants following the BigHand2.2M approach [75], which 
involves measuring the distance between diferent fnger joints. We 
found, on average, distances from the wrist to the tips of: thumb -
121mm (SD=8mm), index - 141mm (8mm), middle - 151mm (9mm), 
ring - 144mm (9mm), pinky - 120mm (10mm). 

4.2.4 Apparatus. We used the OptiTrack™ motion-tracking sys-
tem with 11 cameras running at a 60Hz refresh rate to capture 
fnger movements. We attached 8 facial refective markers (4 mm 
diameter): one on each fnger tip and on the wrist, and two on the 
MCP joint (where the fnger connects to the hand) of the index and 
pinky fngers to help with the manual labeling. The setup is shown 
in Figure 4. To ensure each marker is consistently labeled with a 
unique ID, we manually annotated markers during post-processing 
in the OptiTrack’s Motive software [45]. In total this results in 
879,908 frames of data that we use in our analysis. 

https://BigHand2.2M
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Figure 4: (a) Study setup using an OptiTrack motion capture 
system consisting of 11 infrared cameras. (b) Retrorefective 
markers placed on the hand to track fnger movement. 

4.2.5 Task and Procedure. The participant held an object in the 
dominant hand and used the same hand to perform a SoloFinger 
gesture on the object with a given fnger. We asked participants to 
perform the gesture in such a way that it felt comfortable to them, 
and not in an exaggerated manner. For each action, the participants 
had to perform all gestures using all fngers. If they could not 
perform the gesture due to the odds of dropping the object, they 
notifed the experimenter, who marked this pair of gesture-action 
as impossible to perform. For possible gestures, they rated each 
trial for ease on a 5-point Likert scale. We randomized the order of 
action and counterbalanced the order of gesture and fnger used 
to perform the gesture. For each participant, the experiment took 
approximately 3 hours and was conducted in two sessions of 1.5 
hours each. The full dataset containing recorded data for possible 
gestures from 13 participants with 5,530 trials is made available to 
the research community (see Section 1 for the link). 

4.3 Data Preprocessing 
We solely consider the fngertip position to assess fnger movements 
and defne the wrist position as the origin of the coordinate system. 
We apply a median flter on the realigned fnger coordinates to 
reduce the noise. We analyze the hand data using overlapping 
windows of 1-second duration with a one-frame shift. We chose 
one second based on the observation that most movements were 
completed during this interval. 

On each window, and for each fnger, we create a minimal 3D 
bounding box to attenuate the jitter in the signal. The bounding box 
covers the fngertip’s 3D positions during the frames that constitute 
this window. We calculate the diagonal of the bounding box over 
each window as an estimated measurement of the longest straight 
line the fnger has moved during this window. In the following, we 
refer to these diagonals as the movements of the fngers. 

5 CONCEPT VALIDATION 
The two datasets described above provide data of hand-object in-
teraction, with and without gestures. In the following, we compare 
them to validate our concept by assessing whether extensive single-
fnger movements are unlikely to happen during everyday actions. 
Subsequently, we evaluate the feasibility of performing SoloFin-
ger gestures while grasping objects and derive a set of fngers we 
recommend for SoloFinger gestures. 

5.1 SoloFinger Gestures Are Unlikely to 
Happen During Everyday Hand-Object 
Actions 

The goal of this analysis is to compare fnger motions during 
SoloFinger gestures with everyday hand-object actions. We intro-
duce a Peak Score metric that quantifes how strongly the movement 
of a single fnger deviates from the movement of the other fngers. 
To calculate this, we take the fnger with the maximum movement 
and calculate the ratio between its movement and the movement 
of the others: 

max mf
f ∈F 

PeakScore = Í (1) 
mf ′ − max mf 

f ′ ∈F f ∈F 

where F is the set of fngers and mf is the movement value over 
one window for a fnger f . We compute this value for all windows in 
the datasets. A value of 1 shows that a single fnger moved as much 
as the other fngers combined, whereas a value of 0.25 shows all 
fngers moved the exact same amount. Hence, a high score signifes 
that one fnger traveled a considerably longer distance than the 
others. 

The peak score allows us to numerically compare recorded ac-
tions that involve gestures with actions not involving gestures. This 
provides insights into whether the SoloFinger hypothesis holds. 
We depict the average peak scores of both datasets for each action 
in Figure 5. One can notice that peak scores for everyday actions 
are impressively low compared to actions including SoloFinger 
gestures. A Mann-Withney U test comparing both datasets yields 
a highly signifcant diference (p < 0.001 with Cohen’s d=0.99). We 
observe an average peak score of daily hand-object actions of 0.33 
(SD=0.07). Note, these actions include diferent fnger movements 
from precise (like plugging the charging cable into the cellphone) 
to dynamic motions, such as opening or closing peanut butter, or 
squeezing paper. In contrast, we observe an average peak score of 
SoloFinger gestures of 1.70 (SD=1.95). The high standard deviations 
can be explained by the fact that a gesture happens quickly, hence 
only raising the peak score for an instant. 

In addition, we noticed that the peak score for gestures depends 
on the grasp type and available surface area for fnger movements. 
For example, the Tap gesture has similar peak scores on actions 
involving similar grasp types (e.g., give coin 1.56 (SD=0.90) and 
tear paper 1.49 (SD=0.70)). In contrast, other actions like pour 
wine have a diferent grasp type, involving all fngers in contact 
with the object. This provides stability to do extended gestures, 
resulting in higher peak scores (e.g., pour wine 4.19 (SD=3.55) 
during Tap). With respect to available surface area, the actions 
with smaller available surface area have smaller peak scores for 
Flexion and Extension when compared to Tap. This is because 
the object allows less room for continuous fnger movement (e.g., 
open peanut butter shows a peak score of 2.99 (SD=2.66) for 
Tap; 1.13 (SD=0.98) and 1.08 (SD=0.71) for Flexion and Extension 
respectively). Further studies should investigate how other object 
properties, such as texture and weight afect fnger movement.. 

Overall, these fndings suggest that extensive single-fnger move-
ments are indeed rare during everyday actions, hence creating an 
opportunity for simple yet robust microgestures. 
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Figure 5: Average peak scores for each action present in the two datasets (i.e., with and without SoloFinger gestures). The half 
error bars depict one standard deviation. 

5.2 SoloFinger Gestures Are Compatible with 
Holding Objects 

We now focus on the feasibility of performing SoloFinger gestures. 
While holding an object, the fngers’ primary task is to stabilize 
the object. It needs to be investigated if, despite this primary task, 
fngers can perform SoloFinger gestures, and if this holds true for 
diverse object geometries and grasps. To address these questions, we 
analyzed the gestures participants made in the SoloFinger dataset 
as well as their subjective ratings. 

5.2.1 Finger individuation while holding objects. A frst prerequi-
site for performing a SoloFinger gesture is that a single fnger can 
move independently from others while holding the object. The Indi-
viduation Index (IID ) [54] is a widely used metric from neuroscience 
that measures the extent to which a fnger can move independently 
from others. If a fnger has absolute independence, its IID is 1.00. 
Conversely, a value of 0.0 denotes high dependence. We calculate 
this metric over three windows and retain the maximum value 
for each trial. Results revealed a high average individuation in-
dex(>0.90) [61] for all fngers: thumb = 0.98 (SD = 0.06), index = 
0.97 (0.07), middle = 0.96 (0.07), ring = 0.95 (0.07), and pinky = 0.96 
(0.09). This denotes the principled possibility of performing single 
fnger movements with all the fngers across a diverse set of actions, 
comprising diverse object geometries and grasps. To investigate if 
some actions are more suitable than others, we analysed the IID for 
all actions. We found that the IID is high for all actions, the lowest 
value being 0.93 (SD = 0.10) for the action prick. 

Despite this principled feasibility of single-fnger movement, 
it is obvious that not all fngers can be moved while holding an 
object. Depending on the grasp, some fngers are vital for stabilizing 
the object; moving those would cause dropping the object. For 
instance, while picking up a coin, the user cannot gesture with 
index or middle fnger, but might move any other fnger. In our 
data collection, participants attempted to execute each gesture 
for each action with any of the fve fngers. Each combination of 
fnger, action and gesture that a participant considered impossible 

to perform without dropping the object was labeled as "impossible". 
Noteworthy, for each action and for all participants, at least three 
fngers could be used to perform a SoloFinger gesture without 
dropping the object. 

As a further metric investigating if single-fnger movements are 
possible to perform while holding objects, we also measured the 
average extent of movement of performed gestures. These were: 
thumb 27.4 mm (SD = 21.1), index 29.1 mm (24.5), middle 36.2 mm 
(27.5), ring 38.3 mm (30.0), and pinky 45.7 mm (34.2). Overall, these 
extents indicate a sufciently large range of motions for reliably 
performing gestures. 

5.2.2 Ease of use. For each possible gesture, participants rated 
on a fve-point Likert scale how easy it was for them to perform 
the gesture. Figure 6 shows the normalized ratings aggregated per 
fnger. The results reveal that a vast majority of gestures performed 
with thumb, index and middle fnger are considered easy or very 
easy to perform. In contrast, approximately half of the gestures 
performed with ring and pinky fngers were not rated as easy to per-
form. Mann-Whitney U tests with Bonferroni corrections revealed 
highly signifcant diferences between all fngers (p<0.001) except 
between thumb-middle (p=0.76) and ring-pinky (p=0.76). This indi-
cates users felt more comfortable performing SoloFinger gestures 
with the thumb, index, and middle fngers. 

0%
20%
40%
60%
80%

100%

thumb index middle ring pinky

1 (very hard) 2 3 4 5 (very easy)

Figure 6: Normalized subjective ratings of ease-of-use of 
SoloFinger gestures (captured for each gesture trial). 
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A qualitative analysis of the video recordings of gesture trials 
that have received a low rating revealed that during a considerable 
number of these actions the ring and/or pinky fnger were not in 
contact with the object, but spread out in mid-air. This comprised 
actions like write, sprinkle, clean glasses, where objects 
are grasped with thumb, index, and middle fngers mostly. This 
made it more difcult to perform the gesture, since the participant 
frst had to move the fnger in mid-air to bring it onto the object 
and then move it on the object. Several participants commented 
about fatigue created by the single-fnger movement in mid-air, an 
efect that is also mentioned in prior work [61]. 

5.2.3 Recommended set of fingers. We conclude that single-fnger 
microgestures can be performed with all fngers. While holding 
any object comprised in our dataset, a minimum of three fngers is 
free to move and to perform SoloFinger gestures. This shows that 
SoloFinger gestures are a viable input method for diverse everyday 
objects. However, ring and pinky fngers were oftentimes not in 
contact with the object. According to subjective ratings, the ease 
of performing gestures with these fngers is signifcantly reduced. 
While gesturing with ring and pinky fngers may still function well 
for select objects, we do not recommend using these fngers in 
systems that involve a diverse set of objects or grasps. As our goal 
in this paper is to investigate gestures that are compatible with 
versatile objects, we center our following analysis on thumb, index, 
and middle fnger. 

6 RECOGNIZING SOLOFINGER GESTURES 
AND FALSE ACTIVATIONS 

Thus far, our fndings have revealed a principled diference be-
tween SoloFinger gestures and fnger movement during everyday 
actions and have confrmed their compatibility with grasping di-
verse objects. We now set out to assess in more detail the conceptual 
feasibility of SoloFinger gestures for robust gesture detection. We 
frst present a white-box classifcation technique using thresholds. 
This simple model set-up enables a clear human interpretation 
and understanding of the prediction process. We use it to gain 
further insights into the use of SoloFinger gestures as well as for 
the evaluation of false activations in a large, pre-existing dataset 
of daily hand-object actions. In addition, to validate our concept 
and overcome the limitations of the white-box classifer, we also 
present a black-box classifer in Section 7.2 that uses a more power-
ful machine learning model and supports a more complex gesture 
classifcation setting. 

moveT

d

move d > T
movingFinger 

idleT

d

idled < T
not movingFinger 

Figure 7: Two thresholds for idle and moving fngers are used 
to identify single-fnger microgestures with the white-box 
classifer. 

6.1 White-box Thresholding Classifer: User 
and Action Independent 

As shown in Section 5.1, the Peak Score of SoloFinger gestures 
is much higher than in everyday hand-object actions. Given this 
large diference, we hypothesized that a very simple thresholding 
technique might be a feasible approach for gesture classifcation. 

To understand if only the extent of fnger movement contains 
a sufcient amount of information, we defne two thresholds, one 
for moving and another for idle fngers, as illustrated in Figure 7. 
A single-fnger movement is detected if the movement of a single 
fnger is above the move threshold, while all others remain below 
the idle threshold. 

6.1.1 Train-Test Split and Label Encoding. We used the fngertips’ 
distance as defned in Section 4.3. For classifcation, we frst need 
to identify two thresholds (idle and moving). The recordings of 3 
participants were randomly selected and used to fnd thresholds for 
their data (Train set). The other 10 participants’ recordings were 
held out and only used for evaluation (Test set). This avoids possible 
overftting on evaluation data and allows us to better understand 
how well this procedure generalizes to unseen data. To compare 
the classifer’s performance to the ground truth for training and 
evaluation, we obtained labels (gesture or non-gesture class) that 
were manually annotated. Each trial, consisting of a recording of a 
gesture or non-gesture for one specifc action and fnger, counts as 
one instance. An instance is classifed as positive by the threshold 
model if a single-fnger movement occurs in at least one of its 
windows. For analysis, we built a separate classifer for each gesture 
(Tap, Flexion or Extension). We, therefore, obtain three separate 
binary classifers that check for specifc gesture vs. no-gesture. 

6.1.2 Threshold Optimization. During data collection, we observed 
that the extent of single-fnger movement varies depending on the 
fnger used and the context, i.e., how the user is grasping the hand-
held object. This suggests one should defne tailored thresholds 
for each fnger and adapt these thresholds to each action. Creating 
individual thresholds for each action, however, is a challenging 
problem to solve, requiring tracking actions during user interac-
tion, to update thresholds on-the-fy. Hence, for this conceptual 
evaluation, we aim for a simpler solution and defne a consistent 
set of thresholds for all users and actions. Considering these obser-
vations, we aim at tuning 2 thresholds for our feasible set of fngers, 
i.e., thumb, index, middle fngers and their primitive movement, 
resulting in a set of 2 × 3 × 3 thresholds. 

We run Bayesian Optimization to optimize the thresholds on the 
training data from 3 participants [41]. We have two goals for this 
optimization process: 1) A gesture recognition system should only 
predict a gesture if the user really performed one (precision), and 
2) The system should also detect as many of the user’s intentional 
gestures as possible (recall) and not miss them. The F1 score com-
bines both of these goals as the harmonic mean of precision and 
recall. We, therefore, selected the thresholds that optimized the F1 
score on the training data. As hyperparameters for the search space 
for both thresholds, we used χidle = [0, 20] and χmovinд = [10, 80]
mm. The appendix contains the optimized threshold values (see 
Table 2). We applied the optimized thresholds across thumb, index, 
and middle fngers to classify individual gestures in the Train and 
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Table 1: Classifcation performance of the white-box classi-
fer. 

Train (3p) Test (10p) 
Precision Recall F1 Precision Recall F1 

Tap 1.00 0.96 0.98 1.00 0.93 0.96 
Flexion 1.00 0.82 0.90 1.00 0.79 0.88 
Extension 0.99 0.92 0.95 1.00 0.83 0.90 

Test sets. Note that we use the same thresholds for all actions and 
all participants in the following analysis. 

6.2 Evaluation of Gesture Recognition 
Table 1 shows precision, recall, and F1 scores for the three primitive 
gestures, for both Train and Test datasets. On the Test dataset, a 
100% precision and a recall of 93% is achieved for Tap. Flexion and 
Extension achieved a 100% precision and recall of 79% and 83%, 
respectively. 

A video analysis of gesture trials with low recall revealed two 
main reasons for misclassifcation, linked to the simple distance 
thresholding scheme. First, several small objects ofer limited sur-
face area, resulting in smaller gestures, some of which were too 
small to trigger the movement threshold. For example, the flash 
spray head provides a tiny surface for fngers to slide on, result-
ing in an average recall of only 65% for Flexion and Extension; in 
contrast, Tap achieved a recall of 96% on the same surface. Sec-
ond, a few actions include fngers packed closely, thereby limiting 
individual fnger movement. Notably, drink mug and pour milk 
involve wrapping the fngers around a confned space, which leads 
to fnger movement smaller than the threshold. A third source of 
lower recall was one action (receive coin) in which the object 
was held in the palm without any fnger contact. Here, fngers were 
not constrained by the object, and thus idling fngers moved more 
extensively in mid-air, in turn violating the idle threshold. 

6.3 False Activation During Daily Hand-Object 
Actions 

For an empirical evaluation of false activation, we used the pre-
existing Daily Hand-Object Actions dataset [17], which extensively 

covers a wide range of grasps and actions. For human interpretabil-
ity, we used the white-box classifcation approach with idle and 
moving thresholds. Note, when optimizing these thresholds in Sec-
tion 6.1.2, the Daily Hand-Object Actions dataset was held out. 
The simplicity of the white-box classifer allows us to verify on a 
trial-by-trial basis where the SoloFinger concept does not hold, i.e., 
under what circumstances an everyday action is misclassifed as a 
SoloFinger gesture. We used our three sets of gesture thresholds 
and evaluated the whole dataset successively for each set. As the 
dataset does not contain any SoloFinger gesture, any detected ges-
ture must be considered a false activation. We fagged a trial with 
false activation if it was triggered by any of the three gestures. 

We found that false activation happened in 51 out of 933 trials. 
Figure 8 shows false activation scores per action. The results show 
that for 23 (out of 36) actions, there were no false activations. Most 
false activations relate to only fve actions. On further analysis, 
we found actions with most false activations possess two main 
properties: the object being heavily deformable (paper) or very 
small (cell phone charger, match stick used to light candle). In both 
cases, idle fngers do not stabilize and violate the idle thresholds, 
because they either move along with the deformable object or 
move in mid-air because they are not in contact with the small 
object. Interestingly, the Pour Wine action triggered a relatively 
high number of false activations, despite neither a deformable nor 
a small object involved. When analyzing the video recordings of 
these trials, we noticed that four participants used a specifc way 
of holding the bottle with thumb and index fnger only, while the 
middle fnger was suspended in air, violating the idle threshold. 
This was not the case with the other subjects, and as a result no 
false activation was triggered during their trials. 

Overall, these results are encouraging and demonstrate that 
SoloFinger gestures, even with a very simple classifcation scheme, 
lead to little false activation during a wide range of everyday ac-
tions. They are particularly robust in cases of everyday actions 
that include rigid objects and involve three or more fngers in con-
tact with the object. Most false activations related to a few specifc 
actions. Our fndings suggest that gestures performed on small 
objects can be more robustly classifed if information about fnger-
object contact is available. Then, the classifer could be modifed 
to only consider fngers while they are on the object. Classifca-
tion of gestures made on deformable objects could be improved 
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with information about the position of fngertips on the object, 
rather than in 3D space. We will show in the next section that even 
without additional sensor data, classifcation results can be further 
improved by adding more feature information beyond the simple 
thresholds. 

7 PROOF-OF-CONCEPT WITH COMMODITY 
HARDWARE 

Our initial study confrmed the principled suitability of SoloFinger 
microgestures as a robust means for gestural input during diverse 
everyday actions. We now demonstrate a complete end-to-end 
recognition system with multiple trials recorded for each class. It 
is based on commodity hardware – a virtual reality glove – for 
tracking fnger movements and uses a random forest classifer. 

7.1 VR Glove Dataset 
7.1.1 SoloFinger Gestures. In addition to the primitive fnger move-
ments investigated above (Tap, Flexion, and Extension), we added 
four more gesture variations: Swipe Left, Swipe Right, Zigzag, and 
Circle. The gestures are shown in Figure 2 (b). Each can be per-
formed with the thumb, index or middle fnger, creating a total 
of 21 interaction options (7 gesture variations × 3 fngers). It is 
worth mentioning that this is not an exclusive list, and many more 
variations can be created using the SoloFinger concept. In addition 
to gesture trials, we also recorded trials while holding the object in 
a static pose and while performing actions with the object. 

7.1.2 Actions. To keep the study duration feasible while recording 
multiple gesture trials for a learning-based classifer, we selected a 
subset comprising actions corresponding to the fve most frequently 
used grasps, informed by prior work [5]. (The actions are shown 
in Fig. 9). These actions vary considerably in their duration to 
complete the activity (longer grasp time), involve various motions, 
and possess diferent object geometry and rigidity. 

7.1.3 Apparatus. We use the Noitom® Hi5 VR Glove to track fnger 
movements [42]. The glove provides quaternions for each joint. To 
capture data in a similar format as the other datasets, we attached 
a cubical Unity Game Object at the fngertips and wrist on the 
provided hand model. 

7.1.4 Participants. We recruited 8 right-handed participants (4 
female) aged from 22 to 26 (median = 24), including two participants 

from the previous experiment. We used the same technique as 
described in our frst study (see Section 4.2) to measure participants 
hand sizes. We found, on average, distances from the wrist to the 
tip of: thumb - 111mm (SD = 12mm), index - 134mm (16mm), middle 
- 139mm (19mm), ring - 130mm (23mm), pinky - 112mm (14mm). 

7.1.5 Task and Procedure. We divided the data collection into two 
parts: 1) collect hand-object action data without gestures, and 2) 
record SoloFinger gestures. We asked half of our participants to 
frst collect the action data and then record gesture data after a 
gap of approximately fve days, and vice-versa with the remain-
ing participants. For each action, the participants performed all 7 
SoloFinger gestures with every possible fnger of their dominant 
hand, except the ring fnger. We recorded [8 (#participants) × (5 (#ac-
tion) × 4 (#fnger) × 7 (#gesture) + 5 (#hand-object action) + 5 (#static 
hold) - 42 (#impossible gestures))] × 10 (#trials) = 8640 trials. Informed 
by the empirical fndings described in Section 5.2, we removed the 
pinky gestures and did not consider data with ring and pinky for 
further classifcation, resulting in 5,840 trials. The labeled VR Glove 
Data along with the precise fnger movement data captured by Op-
tiTrack are available at the link mentioned in Section 1 to facilitate 
future research in this area. 

7.2 Black-box Classifer 
The white-box classifer provided insights about the properties of 
SoloFinger gestures at a general level with user and action indepen-
dent thresholds. The real-world deployment, however, may provide 
an option either to fne-tune the thresholds in a calibration process 
[50], or to leverage the complex decision boundaries used by the 
black-box classifers to support multiple gestures. Here, we present 
such a system to support multiclass classifcation. 

7.2.1 Data Preprocessing. Similar to our previous data preprocess-
ing strategy, we used the raw 3D coordinates of the Unity Game 
Object and defned the wrist position as center. Subsequently, we 
applied a median flter on the realigned coordinates. 

7.2.2 Feature Representation and Classification. TsFresh [7] is used 
to obtain a feature representation for each instance, i.e. for the 
sensor recording sequence of each individual trial. Subsequently, we 
fed the feature representation in a random forest classifer provided 
by Sci-kit Learn [47]. This pipeline is not specifc to our system 

edcba

Figure 9: Proof-of-concept system using VR glove hardware supporting fve frequently used grasps. (a) Charge Cell Phone, (b) 
Pour Juice Bottle, (c) Scratch Sponge, (d) Take Letter from Envelope, and (e) Toast Wine. The screenshots show the Unity hand 
model. 
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With Action Information Without Action Information
Gesture No Gesture

a b c d e f g h i a b c d e f g h i

a 671 7 17 6 4 6 8 0 1 a 659 5 24 10 3 5 13 1 0 a : Tap

b 7 595 16 32 33 21 14 2 0 b 3 563 27 42 46 27 10 1 1 b : Flexion

c 14 14 603 9 15 8 56 0 1 c 11 12 576 15 10 8 82 1 5 c : Extension

d 6 27 21 633 15 3 15 0 0 d 2 27 28 602 27 11 21 0 2 d : Swipe Left

e 3 48 13 17 606 26 7 0 0 e 3 47 19 33 578 33 7 0 0 e : Swipe Right

f 2 7 12 5 11 634 48 0 1 f 2 9 18 4 14 608 63 0 2 f : Zigzag

g 4 4 20 6 5 29 651 0 1 g 3 7 26 3 6 30 639 1 5 g : Circle

h 0 0 0 0 0 0 0 400 0 h 0 0 1 1 1 1 1 394 1 h : Static Hold

i 0 0 0 0 0 0 0 0 400 i 0 0 0 1 1 0 9 0 389 i : Action w/o Gesture

a b

Predicted

Tr
ue

Figure 10: Confusion Matrices with and without action information. 

and was used in prior work [19]. We did not optimize the hyper-
parameters of the classifer and used the default settings with n-
estimators = 500. Due to the personalized patterns involved in 
some gestures, such as Zigzag or Circle, that have a high degree 
of variation among users, we opted for user-dependent models. 
In a real setting, pre-trained models for individuals can be easily 
saved and restored to avoid the burden of per-session training. 
From our initial analysis, we learned that fnger movements vary 
on diferent objects. Therefore, we performed evaluation in two 
conditions - training with and without action information. Thus, 
the classifcation task was to classify individual trials of all 9 classes 
(7 gestures + 1 static hold + 1 action without gesture) without action 
information for every participant. For the condition with action 
information, we trained models separately for all fve actions. 

We evaluate classifcation using the leave-one-trial-out 10-fold 
cross validation technique for each participant (9 Train trials of 
each class, 1 Test trial - 10 permutations). Note that the imbalance in 
the trial count is because we combine the results across all actions 
which include impossible gestures on a few fngers. 

7.3 Results 
7.3.1 With Action Information. Figure 10 (a) shows the result of 
the gesture classifcation for a setting in which the action is known. 
Note that no false activations were triggered. The average accuracy 
is 89%. Across all actions, the Tap gesture achieved the highest 
accuracy of 93%, followed by Circle with 90%. The lowest accuracy 
was 83% for Flexion and 84% for Extension. We assume this is 
related to the VR glove’s wiring, which runs across the back of the 
fngers and might have restricted bending movements. In contrast 
to results from the white-box classifer, where fngers violated the 
idle threshold on extremely deformable objects (paper), the black-
box classifcation did not trigger any false activations for the action 
that involved paper (take letter from envelope). 

Note that this model requires prior knowledge about the action 
the user is performing. In many applications, this information is 
readily available. For instance, a microgestural input system devised 
for a specifc object (such as a smart surgical tool, an augmented 
drilling machine, or a smart pen) can readily use an object-specifc 

model. Otherwise, activity recognition [68] could be integrated to 
identify the ongoing action. 

7.3.2 Without Action Information. For comparison, we report re-
sults for the more demanding case in which the action is not known. 
Here, the average classifcation accuracy is 86%. Here again Tap 
achieved the highest accuracy of 92%. The lowest accuracy of 84% 
was Circle, which sometimes gets misclassifed with Zigzag, par-
ticularly when performed with the middle fnger. False activations 
were triggered only in 2.12% of total action and static hold trials, 
with a total of 17 (out of 800) trials (see Figure 10 (b)). 

8 DISCUSSION, LIMITATIONS AND FUTURE 
WORK 

Our fndings demonstrate that SoloFinger gestures provide a robust 
scheme for microgestural input on the object itself, creating a low 
number of false activations during many everyday hand-object 
actions. Here we refect on the strength and limitations of the 
proposed approach and discuss areas for future work. 

8.1 Sensing Technology to Implement 
SoloFinger 

SoloFinger is not restricted to the hardware we use in our proof-
of-concept implementation and can be implemented with various 
sensing technologies. A sensor should provide information about 
the distance that a user’s fngertips move, at approximately a 2– 
3 mm resolution. Of note, the sensor does not necessarily need 
to provide information about fnger-object contact. However, an 
important requirement is that it function while the fngertip is in 
contact with an object. While this prevents us from using estab-
lished computer vision techniques, which tend to sufer from occlu-
sion generated by the object [62], recent advances show promising 
results for hand-object interaction [39, 62, 66]. Objects equipped 
with high-resolution touch sensors [4, 49, 60, 64] are also promising 
to further deploy SoloFinger gestures, given the precise temporal 
and spatial contact information provided. Furthermore, other tech-
nical approaches such as magnetic [6, 24], electro-magnetic [46], 
radar-based [33], and IMU-based approaches [59] can be promising 
avenues for realizing SoloFinger gestures. 
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8.2 Gesture Classifcation 
Our results revealed that false activations are primarily caused by 
deformable and small objects, such as paper or a match stick. Our 
current scheme considers data from fngers no matter whether in 
contact with the object or not. In our white-box analysis, we found 
that in-air fngers tend to make considerably larger involuntary 
movements while another fnger is gesturing, due to the lack of 
stabilizing object contact. Hence in-air fngers more frequently vi-
olated the idle threshold and therefore led to lower recall. Future 
implementations could detect fnger contact using a dedicated sen-
sor or approximate it based on grasp or action type, and then only 
consider fngers that are in contact with the object for classifcation. 
We showed that adding more features and a more advanced classi-
fer as in our black-box implementation can further help increase 
classifcation performance and robustness. Furthermore, using an 
ensemble of classifers may further improve the accuracy of gesture 
detection: a binary classifer, as described in the white-box classif-
cation, forms a frst layer to identify the gesture and non-gesture 
class; this is followed by a second layer of multi-class classifcation. 

The SoloFinger gestures in our study were performed with the 
object held in a static pose. Future work should investigate the 
efect of performing gestures while manipulating the object, such 
as hammering with a hammer. Note, however, that our analysis of 
false activation did involve object manipulation. Also, we used one 
set of thresholds for all users; it will need to be investigated whether 
this generalizes to children or users with very large hands. Future 
work could normalize thresholds for hand size or fnger length. We 
intentionally focused on a basic set of gestures for this frst study. 
In future work, we plan to develop a design tool, inspired by [28], 
that ofers computational assistance to designers seeking to identify 
new SoloFinger gestures. 

8.3 Investigating More Objects and Specialized 
Actions 

While our analysis did demonstrate that SoloFinger gestures could 
be very robust in reducing false activations during daily hand-
object interactions using diverse objects, there remain additional 
cases to be investigated. First, our study did not include objects 
that comprise mechanical interface elements, such as buttons or 
sliders, or touchscreens. We assume that using those might involve 
extensive single-fnger movements similar to SoloFinger gestures. 
In these cases, we recommend that the designer should carefully 
understand the regular fnger movement on such objects and then 
select SoloFinger gestures accordingly to avoid conficts. Second, 
we observed that highly deformable objects can result in increased 
false activation. Our datasets do not contain information about the 
touched location on an object; hence it does not allow us to difer-
entiate between fnger movements on an object and fngers that 
remain at the same object location but move in 3D space while the 
object itself is deforming. With a sensing technology that provides 
on-object touch location, we anticipate that the SoloFinger concept 
could still work for most deformable objects. Furthermore, the efect 
of specialized dexterous actions need to be studied. Actions such 
as playing a musical instrument, sculpting or performing a surgery 
might possibly involve more pronounced single-fnger movements. 

8.4 Impact of the Dataset 
While we have tested false positives on an extensive dataset cover-
ing a large set of grasps, objects, and actions, the dataset is subject 
to limitations. Our motive behind using this dataset rather than 
a feld recording is that it ofers precise and realistic hand data 
with broad coverage of hand-object actions. Given the technical 
limitations of recording such highly articulate actions, this would 
likely be challenging in a feld recording. Specifcally, the dataset 
contains focused activities, which we worked on as a frst step to 
explore our concept’s potential. However, in addition to the focused 
activities, diferent idle phases may occur in real-world interaction. 
Idle phases might bring additional challenges for classifcation, for 
instance arising during change of hands, multi-tasking, nervous 
tapping, or when the user is fddling with an object. These should 
be investigated in future work by capturing longer-term in-the-wild 
data. 

9 CONCLUSION 
We presented SoloFinger, a novel concept to identify and design 
robust single-fnger microgestures while grasping everyday objects. 
The results from our data-driven analysis confrmed the insight 
that fngers tend to be either static or moving concurrently while 
holding and manipulating a wide range of objects. This opens up a 
space for rapid, easy and elegant microgestures performed on the 
object itself and resilient to false activations. Our simple white-box 
classifer achieved an average precision of 100% and recall of 88%, 
with only 51 false activations among 933 action trials of an unseen 
dataset. Of note, no false activation was triggered in 23 actions out 
of 36 actions. 

We ultimately presented a proof-of-concept with commodity 
hardware and a black-box classifer that can detect 7 types of SoloFin-
ger microgestures and hand actions with an accuracy of 89%. When 
the action is known, no false activations occurred in the collected 
dataset of around 800 everyday actions, whereas a small number 
(2.12%) of trials involved false activation in the more demanding 
case when a single classifer is used for all actions. 

During this work, we tested several state-of-the art techniques 
to capture as much information as possible during hand-object ma-
nipulation, but these techniques still sufer from occlusion. Inspired 
by our peers [13, 30], we also provide our dataset to the community 
to further advance the understanding of dexterity of single-fnger 
movements while grasping objects and leverage this dexterity to 
design quick and seamless gestures that can be integrated with 
everyday actions. 
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A APPENDIX 

Table 2: Optimized threshold values (in mm). 

Gesture Thumb Index Middle 
Idle Move Idle Move Idle Move 

Tap 16.94 22.45 12.73 21.99 7.66 15.59 
Flexion 8.94 20.90 9.64 19.05 6.97 15.49 
Extension 10.96 21.48 10.05 16.32 9.35 13.00 
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