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Gestural interaction with freehands and while grasping an everyday object enables always-available input . 

To sense such gestures, minimal instrumentation of the user’s hand is desirable. However, the choice of an 

effective but minimal IMU layout remains challenging, due to the complexity of the multi-factorial space 

that comprises diverse finger gestures, objects, and grasps. We present SparseIMU , a rapid method for se- 

lecting minimal inertial sensor-based layouts for effective gesture recognition. Furthermore, we contribute a 

computational tool to guide designers with optimal sensor placement. Our approach builds on an extensive 

microgestures dataset that we collected with a dense network of 17 inertial measurement units (IMUs). We 

performed a series of analyses, including an evaluation of the entire combinatorial space for freehand and 

grasping microgestures (393 K layouts), and quantified the performance across different layout choices, re- 

vealing new gesture detection opportunities with IMUs. Finally, we demonstrate the versatility of our method 

with four scenarios. 
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Fig. 1. We present a data-driven method for designing effective microgesture recognition systems that only 
require a sparse set of IMUs. (a) The method builds on an extensive microgestures dataset that includes 
Freehand and Grasping conditions, collected using a customized dense IMU setup. (b) A design tool helps 
designers to rapidly select sparse IMU layouts for a desired set of gestures and optional constraints. (c) It 
informs effective sensing solutions with minimal instrumentation for a broad variety of applications. 
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 INTRODUCTION 

n situations found in everyday life, people’s hands can be free, but are often times also busy with
bjects they hold, carry, or use. Interaction techniques for always-available input [ 77 ] should be
esigned considering these settings. Prior work in HCI has established the design foundation of
reehand and grasping microgestures: subtle finger gestures that can be performed with free [ 12 ]
nd busy hands [ 82 , 83 , 102 ]. These gestural techniques enable eyes-free, always-available inter-
ction in demanding situations. However, implementing such input solutions is challenging, and
t becomes even more complex if the recognition system needs to recognize microgestures in both
ree-hand and busy-hand conditions. Apart from the numerous spatial configurations that are
ossible with the dexterous movement of multiple fingers, the recognition system also needs to
ccount for occlusions that are typically created when hands are occupied. These challenges make
he deployment of optical sensing techniques very demanding [ 66 ]. 
One approach to address the challenges of hand occlusion includes extensive hand instrumen-

ation. Prior work has demonstrated promising results for hand pose reconstruction while manip-
lating objects. For instance, Han et al. achieved this by employing deep learning combined with
arkers attached all over the hand [ 33 ]. Yet, extensive hand instrumentation is undesirable for
ractical use, as it will hinder the user going about their other everyday tasks. Other work has
hown promising results by making use of sparser hand instrumentation, with only one or a few
nertial Measurement Units (IMUs) [ 28 , 84 , 103 , 107 ]. IMUs are easy to deploy and can be ergonom-
cally worn in a light-weight ring form factor. In addition, they are sensitive to subtle movements
nd do not suffer from occlusion problems. 
However, the IMU layout, i.e., the specific locations where IMUs are placed on the hand and
ngers, is crucial for accurate gesture detection. Designing an IMU layout that is sparse while ca-
able of accurately detecting gestures is a challenging task and depends on multiple factors. These
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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actors include the desired choice of microgestures, the hand conditions (free-hands v/s busy-hands
r a combination of both), the grasp type (associated with holding an object), and the user-defined
onstraints for IMU placement. So far, IMU layouts for sparse instrumentation had to be chosen
anually, in an ad-hoc manner, or using systematic trial-and-error [ 84 , 103 ]. Considering the com-
lexity of the multi-factorial design space, this manual process is time-consuming and may lead
o far sub-optimal layouts. This work addresses this challenge by supporting designers of gesture
ecognition systems to make well-informed and rapid decisions. 
We present SparseIMU , a computational design approach to assist interaction designers and

ngineers in creating gesture recognition systems, which effectively recognize a desired set of
reehand and/or grasping microgestures with minimal hand instrumentation. A web-based design
ool provides designers with the possibility to specify high-level requirements (e.g., desired set of
estures and grasps) and designer-specified constraints (e.g., locations on the hand and fingers that
hall remain un-instrumented, and the total number of IMUs to be deployed). It then automatically
elects an optimal sparse IMU layout matching the given preferences as shown in Figure 1 (b). In
ddition, the tool predicts the expected performance of gesture classification, including a confusion
atrix. This allows the designer to assess the expected quality of a solution and to rapidly explore
esign alternatives in a well-informed manner. To the best of our knowledge, our computational
pproach and design tool are the first to enable the rapid iterative design of sparse IMU-based
ensing solutions for microgestures. 
The presented data-driven approach is based on our collection of an extensive microgestures
ataset, captured with a customized hardware setup containing 17 synchronized IMUs placed all
ver the dominant hand. It comprises of 18 gestures and three non-gesture states performed with
n empty hand as well as on 12 objects that cover all the six grasp types from Schlesinger’s taxon-
my [ 79 ], collected from 12 participants. Our dataset comprises fully annotated dense IMU data.
his allowed us in computing models with all possible IMU layouts in Freehand, Grasping, and
oth Combined conditions [in total 3 × ( 2 17 − 1 ) = 393,213 models]. 
To investigate the potential of making conscious design choices when selecting a specific sparse

MU layout, we performed a series of empirical analyses looking into effects on recognition per-
ormance. Chiefly we have made the following observations: (i) Sparse layouts with a very low
umber of IMUs achieve high recognition rates of 90% F1 score and above, (ii) the choice of finger
egment for IMU placement can be crucial, and (iii) IMUs placed on a non-gesturing finger can
e utilized to detect gestures from another finger. These findings reveal insights that uncover the
reat potential of sparse IMU layouts in gesture detection. 
The collected microgestures dataset additionally serves as the building block for deriving a fast
ethod to select sparse layouts. We employ a variant of a well-known metric from Machine Learn-

ng (ML), Feature Importance , to rapidly select optimized sparse layouts. We validate our SparseIMU
pproach with the classification results from the entire combinatorial space; the results demon-
trate our method’s efficacy. While generating results based on the entire combinatorial space
s prohibitively time-consuming for a practical design task, our method generates results within
inutes on a commodity laptop. Consequently, our approach can be used to enable rapid design

terations. 
We demonstrate the benefits of the SparseIMU approach using four exemplary application cases.

inally, our user evaluation shows congruence in the tool’s predictions and live gesture recogni-
ion. These show how the tool enables designers and engineers to rapidly determine optimal sparse
MU layouts, identify trade-offs, and fine-tune designs. Together, our rich microgestures dataset
nd computational design tool enable a rapid iterative design process in which designers can cre-
te, explore and modify custom sensor layouts in a well-informed manner. 
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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In summary, the main contributions of this article are: 

—Microgestures Dataset: Using 17 IMUs placed on the hand, we captured microgestures
and hand manipulations with freehand and while holding 12 objects, performed by 12 par-
ticipants. Overall, it consists of 13,860 trials, resulting in a total of 3,404,276 frames. We re-
lease our fully annotated dataset at: https://hci.cs.uni-saarland.de/projects/sparseimu . We
hope it will be beneficial for the research community to gain insights into the subtle finger
movements that happen during holding and manipulating objects, opening up a number
of opportunities for future research in diverse areas such as gesture design or analysis of
finger dexterity during object manipulation. 

—Computational Design Approach for Detecting Microgestures: We present a method
and graphical tool to rapidly select sparse IMU layouts that achieve a good tradeoff between
minimal instrumentation and high recognition accuracy, taking into account various user-
defined preferences. We also release our computational tool code with the dataset at the
aforementioned link. 

—Series of Empirical Analysis: We quantified gesture recognition performance in different
settings to thoroughly understand the effect of segment choice, the potential of detecting
gestures from the IMUs on a non-gesturing finger, and generalizability across different
users. 

—Application Scenarios: Four application scenarios from diverse and representative do-
mains illustrate how designers and engineers can leverage the potential of our approach
for concrete design tasks. 

 RELATED WORK 

ur work primarily lies at the intersection of microgestures, gesture sensing, and gesture design
ools. 

.1 Freehand and Grasping Microgestures 

icrogestures (or Micro-interactions) refer to the subtle finger movements that are fast, easy to
erform, and may not interrupt the other ongoing tasks [ 5 ]. They enable myriad applications in
ifferent scenarios [ 31 , 34 , 35 ]. Such microgestures are further interesting because they can be
erformed while holding an object (e.g., a steering wheel [ 2 ]) in hand. In such conditions, the
hysical constraints of each finger vary based on grasp and object type. 
Prior works have taken several paths for designing gestures that are possible with the same hand
hile holding an object: from interviewing experts [ 102 ] to using prototypes for understanding
olding behavior [ 90 ]. Additionally, there is a rich body of prior work on the design of hand ges-
ures (see [ 94 ] for a survey). These works adopted different design methods to develop gesture sets
nd focused on either empty hands or holding an object. A common technique to design gestures
n HCI using Guessability-style elicitation studies was proposed by Wobbrock et al. [ 99 ]. We build
n prior conceptual work that used this technique for deriving single-hand gestures in an empty
and [ 12 ], as well as for busy hands holding objects of different grasp types [ 83 ]. By consolidating
 uni-manual gesture set from these two works, our goal is to enable a generic and scalable solu-
ion. In this article, we advance these conceptual foundations through a sensing approach, which
akes their application in real-world deployments possible. 

.2 Sensing Technologies to Detect Microgestures 

arious sensing techniques have been proposed to detect finger gestures. While each has its advan-
ages and disadvantages, it is worth noting that the selected sensing type has a crucial role in the
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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ardware’s placement location and the enabled gesture set. A large body of pioneering work relies
n optical sensing for detecting microgestures. CyclopsRing [ 13 ] proposed a finger-worn fisheye
amera device to detect on-finger and in-air pinch and slide gestures, as well as palm-writing,
ingerInput [ 85 ] demonstrated the detection of thumb-to-finger gestures using a head-mounted
r shoulder-mounted depth sensor. Sugiura et al. [ 87 ] have shown recognition of discrete finger-
ased gestures using an array of photo-reflective sensors placed on the back of hand. A variety of
ther sensing approaches include ultrasonic [ 41 , 63 , 64 ], infrared [ 27 , 44 , 63 , 108 ], pressure [ 16 , 21 ,
8 ], magnetic [ 3 , 37 , 69 ], and capacitive techniques [ 7 , 91 ]. Due to the advances in deep learning, re-
earchers have also demonstrated the detection of fine finger movements using radar sensing [ 96 ].
hese systems show some remarkable success in enabling gesture recognition in freehand condi-
ions. However, due to the inherent property of such sensing technologies, these approaches can
ail under occlusion caused by holding an object. 
Although occlusion can be compensated by augmenting an object, the scalability issue can be

 bottleneck to practical deployment. Another approach is based on data gloves that are instru-
ented with sensors [ 26 , 33 , 88 ]. Despite being able to capture high-fidelity information, they
re often bulky and hence impede the dexterity of fingers. For a more detailed overview of the
ifferent vision-based and glove-based approaches, we refer to [ 14 ]. The most closely related ap-
roach to our goal of supporting gesture detection in both conditions, freehand and while grasping
n object, is proposed using an electromyography band by Saponas et al. [ 77 ]. However, the se-
ected grasp variations and the number of gestures are limited due to the lower resolution of the
echnique. Laput et al. used a smartwatch accelerometer to detect coarse freehand gestures and
lso demonstrated activity detection [ 52 , 53 ]. Furthermore, placing an IMU on finger segments
as been shown to be effective in capturing subtle finger movements and does not get affected if
here is an object in hand [ 67 , 92 , 103 ]. Recently, DualRing [ 55 ] presented the usage of two IMUs
laced on the thumb and index finger’s proximal segment to detect four grippings postures but
id not consider any gestures while holding objects. Bardot et al. [ 6 ] suggested the usefulness of
 smart-ring (embedded with an IMU and a touchpad) for gestures in hands-busy situations. We
ake inspiration from these systems and selected IMUs as our sensing technique to simultaneously
upport gestures with freehand and while holding an object conditions. 

.3 Sparse Sensor Layouts 

hile the aforementioned works presented a viable technological solution to capture finger in-
ormation while holding objects, these do not investigate the optimal sensor placement to fully
arness the capability of IMU sensing. Yet, the placement of sensors is as crucial for gesture de-
ection as selecting the appropriate sensing type. This is prominently shown by the findings from
u et al. [ 28 ] and Shi et al. [ 84 ] who used a single IMU and determined that touch-contact recog-
ition performance can be strongly increased by investigating the optimal position on different
nger segments. Lin et al. [ 56 ] used an array of strain gauge sensors to detect finger gestures
ased on American Sign Language and reported the minimum accuracy of 70.8% can be increased
o 95.8% for an identified optimal location. Kubo et al. [ 51 ] applied pizo-electric elements to detect
humb, thumb-to-finger, gestures, and palm touches and reported the change in accuracy from
0.6 to 96.6% for an optimal location. All these works employed the trial-and-error approach of
oving the sensor at different locations, requiring considerable time and effort. We leverage our
ense setup of 17 IMUs to avoid the process of repeating manual trials involving the movement
f the single sensor at different locations. Using the principle of compressed sensing and other
ophisticated techniques, a large body of work has demonstrated that the human body pose can
e reconstructed by a significantly reduced number of sensors [ 1 , 20 , 39 , 68 , 81 ]. However, as men-
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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ioned by Brunton et al. [ 10 ], reconstruction and classification are two different problems. While
ome work exists that uses sparse representation for gesture classification, it mainly uses visual
ata [ 62 , 75 ]. To the best of our knowledge, our work is the first that presents a computational
ethod for identifying a sparse layout for gesture classification using IMUs. 

.4 Gesture Design Tools 

esture design and recognition have received a lot of attention in HCI. Wobbrock et al. [ 100 ]
roposed $1 for rapid prototyping of gesture-based interfaces. Long’s Quill [ 58 ], a pen gesture
ystem, enables users to create pen gestures by example. Similarly, several design tools have been
resented in the HCI literature for the design of various gestures. These include work from Ash-
rook et al. [ 4 ] and Kohlsdorf et al. [ 49 ] that allows the designer to compare a gesture with a
orpus of everyday activity data for false positive testing. EventHurdle [ 47 ], M.Gesture [ 46 ] and
ogeste [ 70 ] enable users to compose custom gestures on mobile devices. Gesture Coder [ 60 ] is a

ool to help developers add multi-touch gestures by demonstrating them on a tablet’s touchscreen.
hile there are existing machine learning-based frameworks and platforms for quickly prototyp-

ng and debugging various classifiers and implementing custom machine learning pipelines [ 36 ,
1 , 72 ], they are targeted for programmers and do not consider aspects of interaction design. On
he other hand, recent advances in technology have enabled novice users to train and classify cus-
om ML models without the need for programming expertise [ 61 ]. However, these majorly address
mage or audio classification problems. Our main goal behind this work is to use machine learn-
ng as a design material [ 18 ] and enable designers to prototype custom microgestures without the
eed for having expertise in ML and programming. Motivated by the challenges of designing a
parse sensor layout, we strive to provide designers with a computational tool that abstracts from
he complexity of multiple factors (choice of gesture, object, and location constraint), which are
onventionally tuned by manual efforts and require technical skills. 

 MICROGESTURES DATASET 

esearchers in the computer vision community have contributed various datasets comprising
and-object manipulations [ 8 , 25 , 89 ]. Yet, these do not include explicit finger gestures . Our dataset
s the first attempt to collect hands-free and busy interaction along with finger microgestures. We
se a dense network of 17 IMUs to capture high-dimensional sensor data with nearly full degrees
f freedom (DOFs) of the hand/finger space. This is different from prior work wherein a single sen-
or has been shifted to different locations in different trials for finding the optimal placement [ 84 ].
ur high-dimensional data enables employing novel algorithmic approaches to uncover hidden
henomena; some of them are mentioned in the following sections. Overall, our dataset focuses
n finger gestures—performed by different fingers—on objects with diverse grasp types, as well as
ith free hands. It also comprises hand-object manipulations with different intents, such as hold-
ng an object, using it as suggested by its primary purpose (e.g., writing with a pen), and handling
t in an unscripted manner (e.g., fiddling). Although the dataset is intended to analyze microges-
ures, it can serve other purposes in future research, including enriching our understanding of
nger movements during hand-object interaction, creating synthetic data, or pre-training neural
etworks. 

.1 Dense IMU Setup 

nstead of utilizing commercially available gloves or marker-based solutions [ 23 , 33 ], we per-
ormed the data collection with a customized hand sensor system that preserves the cutaneous
roperties of the hands, the sense of touch, and does not suffer from occlusion. The sensor system
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 2. Hardware setup with 17 synchronized IMUs placed all over the dominant hand. It preserves cutaneous 
properties and allows unobtrusive interaction with complex object geometries. The left image labels describe 
the spatial notation of each IMU used in our analysis. 

i  

d  

w  

I  

u  

o  

a  

o  

a  

c  

t  

o  

w  

<  

i  

h  

t  

p  

f  

s  

f

3

W  

a  

i  

w  

G  

g  

(  

w  

l  
s shown in Figure 2 . It offers an unobtrusive setup of 17 synchronized IMUs [ 76 , 93 ] that provide
etailed information about the full articulation of a human hand. It includes 9DOF inertial sensors
ith 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer (MPU9259, InvenSense
nc., CA, USA) with a footprint of 3 × 3 mm, deployed on all three segments of all five fingers
sing a medical-grade skin-friendly adhesive tape (Helvi Mogritz). The finger IMUs are mounted
n flexible sensor strips and connected to a base unit attached at the hand’s back, which includes
n additional IMU. A customized fixture with a thin velcro belt is used to fasten the base unit
n the hand, and the data is sent to the computer through a USB connection. We also attached
 wireless IMU (RehaGait, Hasomed GmbH, Germany) on the distal forearm, to include data
omparison from existing consumer devices like smartwatches or fitness trackers, resulting in a
otal of 17 IMUs. All IMUs are precisely time-synchronized, and the data is captured at a framerate
f 100 Hz. We refer to Salchow-Hömmen et al. [ 76 ] for full details on formal hardware validation,
hich found that sensor readings are accurate enough to infer fingertip positions with errors
 2 cm. For the use of the raw IMU data, the hardware does not require any calibration, making
t particularly practical and feasible for studies. However, we integrated an initial pose with the
and flat on the table and the straight thumb abducted at a known angle for a few seconds at
he beginning of each subject’s recording, in order to boost the dataset’s versatility in light of
otential future uses where a baseline or calibration pose might be desired. We also note that the
ramerate of our dense setup of 17 IMUs is in line with that of Xu et al.’s [ 104 ] recent work, which
uggests that 100 Hz is sufficient for hand gestures’ classification. Furthermore, prior studies have
ound that even the quick movements of the fingers are slower than 10 Hz [ 40 , 42 ]. 

.2 Objects Representing Grasp Variations 

e collected data in Freehand and while Grasping an object conditions. For the latter, we selected
 set of objects that are representative of real-world tasks. Specifically, we chose objects labeled
n the VLOG Dataset [ 24 ] which is based on internet video logs of everyday activities. To ensure
e have representatives for each type of grasp, we categorized the objects based on Schlesinger’s
rasp Taxonomy [ 79 ]; this has been widely employed by prior works [ 19 , 22 , 77 , 83 ]. For each
rasp type, we focused on non-deformable objects with two size variations Small (S) and Large
L). The VLOG Dataset does not contain objects that correspond to Small Tip and Spherical grasps,
hich is presumably a result of not all grasp types being equally well-represented in everyday
ife [ 11 ]. Therefore, we added two additional objects, a Needle and Pestle, to obtain an exhaustive
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 3. Using a dense network of 17 IMUs placed on the hand, the microgestures dataset was collected for 
Freehand and while Grasping 12 objects covering each of the six grasp types with two variations. 
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ist of objects covering all grasp types [ 83 ]. The complete set of 12 objects and their corresponding
rasp type is shown in Figure 3 . 

.3 Gesture Set and Non-gesture States 

or Freehand and Grasping conditions, we collected finger movements while performing micro-
estures and non-gesturing states. For the microgestures, we focused on conscious subtle finger
ovements that do not require altering the grasp. We selected six primitive finger movements
ased on bio-mechanical characteristics [ 43 , 95 ], shown in Figure 4 : Tap , Flexion , Extension , Ab-
uction , Adduction , and Circumduction . For consistency of gestures across different fingers, we use
he Ring finger as the reference to define Abduction (away from the Ring finger) and vice-versa
or Adduction gestures. Furthermore, the swipe gesture was recorded with the participant’s finger
otion from one extreme until it reached the opposite extreme. Following Ashbrook’s definition
f micro-interactions [ 5 ], we further limited our set to gestures with a short duration (4 seconds
ig. 4. The Dataset includes six gestures performed with three fingers—T ap, Flexion, Extension, Abduction, 
dduction and Circumduction—resulting in a total of 18 gestures. Additionally, data was recorded for three 
on-gesture classes: Static hold (just holding the object), performing Primary action while holding the object, 
nd an Unscripted action where the user was free to perform any custom movements. 

CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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r less). Moreover, we centered our data collection on single-finger gestures because they promise
o increase robustness [ 82 ]. In terms of gestural input, these movements translate to both - con-
inuous and discrete gestures through directional sliding and tapping. 
The collected non-gesture states include a variety of finger movements that users perform

onsciously or unconsciously during conventional hand/object interaction. For instance, free
and movements while talking, adjusting the grip, turning the object for visual inspection,
anipulating the object, or fiddling. For capturing non-gesture conditions, we recorded Static
old , Primary action (e.g., writing with a pen, drinking with a glass), and Unscripted actions (e.g.,
djusting grip, fiddling). The participants were given no explicit instructions while the data for
nscripted action was recorded. 
Since moving a finger while holding an object risks dropping the object, we empirically verified
hich fingers can be moved while holding objects. To consolidate our choice of finger movements,
e conducted a pilot study. Two interaction design experts independently recorded their response
n a 7-point Likert scale (1: impossible to perform and leads to dropping the object; 7: very intuitive
nd easy to perform). This resulted in a total of 360 gestures: 6 (gestures) × 5 (fingers) × 12 (objects)
nspected by each expert. Of 720 Likert scale readings, 42 gestures received a rating of 1 by both
he experts and these were marked as impossible. Consequently, we focus on the Thumb, Index,
nd Middle fingers as our main gesture fingers; a choice which is in-line with prior works [ 12 , 82 ].

.4 Participants 

e recruited 12 participants (6 M, 6 F, mean age: 26.1; SD: 3.4) with different professional back-
rounds, including a computer graphics researcher, firefighter, and kindergarten teacher. Ten were
ight-handed, and two reported themselves as ambi-dexterous. We measured their hand size from
he Wrist to each finger’s tip and found an average length to Thumb’s tip: 137 mm (SD: 8 mm),
ndex: 181 mm (SD: 12 mm), Middle: 192 mm (SD: 12 mm), Ring: 181 mm (SD:10 mm), and Pinky:
57 mm (SD: 9 mm). For context, the average hand length (middle finger’s tip to the wrist crease)
s 193 mm and 180 mm for males and females, respectively [ 74 ]. Participation to our data collec-
ion was voluntary while adhering to the institution’s COVID-19 rules and regulations, and each
articipant received a compensation of 30 Euros. 

.5 Task and Procedure 

efore starting the data collection, we demonstrated the gestures on an abstract cylindrical object
hat was not used any further. Once the participants got familiarized with the gestures, we attached
he hardware to their dominant hand, and they performed the initial pose by placing the hand on
he table. For the Grasping condition, we asked the participants in perform gestures on the object
while maintaining the grasp), and use the palm as the surface for the Freehand condition. Of note,
he same hand was used for holding the object and for gesturing. Furthermore, the directional
rientation was kept constant across each participant. They performed all the gestures while sit-
ing on a chair, except for Box and Bag, wherein we systematically added variation in posture and
rientation for each participant by asking them to perform the gestures while standing and facing
erpendicularly. We counterbalanced the two conditions (Freehand and Grasping) and further
ounterbalanced the order of objects (grasp variations). Once the Freehand or the Grasp variation
as selected, we presented the gestures with the specific finger name and non-gesture states in a
andomized order. We recorded five trials for each gesture. To collect data from non-gesture states
ithout interruption, we recorded one long sequence of around 30 seconds and split it into five
rials. The dataset collection took approximately 3 hours per participant with breaks in-between
o avoid fatigue. The sessions were also video recorded. Using a custom MATLAB application,
he experimenter manually annotated the trials during data collection with the participants
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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rally communicating the start and stop of the gesture. The labels include information about the
reehand or specific grasp variation, gestures along with the instructed finger, and the three non-
esture states. Overall, our dataset contains a total of 13,860 trials (1,155 trials × 12 participants)
ith 18 different gesture and three non-gesture states performed on 12 Grasp variations and with
reehand. 

 DATASET ANALYSIS TO UNDERSTAND IMU PLACEMENT 

he usage of IMUs in HCI has been explored for gestural input; the most common approach is to
lace a single IMU on the gesturing finger [ 28 , 29 , 30 , 84 , 107 ]. However, very little is known about
he relationship between the precise position of IMU(s) and its effect on classification performance.
o understand the multitude of factors affecting the overall classification performance, we sought
o systematically investigate different perspectives, including the quantity of IMUs, variation be-
ween different finger segments, alternative IMU placement locations to simultaneously achieve
igher recognition and usability, lastly, evaluate the feasibility of a user-independent recognition
odel. An in-depth understanding would not only enable taking full advantage of the IMU sens-

ng capabilities and fine-tuning IMU placement to achieve the maximum performance for a given
et of gestures, but also uncover hidden patterns to identify optimal designs of gesture sensing
evices. 
This section first describes our classification pipeline and a series of empirical analyses, which
ffers new insights into the design of sparse IMU layouts for hand microgesture recognition. 

.1 Feature Extraction and Classifier Selection 

iming to understand the underlying factors affecting performance rate due to IMUs’ location, we
tarted off by creating a classification pipeline. Given the size of our search space has the large
umber of 393 K layouts, we created a gesture detection pipeline with two essential requirements:
calable and rapid train-test time. 

Feature Extraction . From a given trial and for each of the 9 axes of an IMU, we extract six statis-
ical features: maximum, mean, median, minimum, standard deviation, and variance. In total, the
umber of features from all 17 IMUs × 9 axes × 6 features amounts to 918. To compile this list of
eatures, we drew inspiration from the automatic feature extraction library, TsFresh [ 15 ], which
as shown promising results in prior work on gesture and activity recognition [ 27 , 45 , 57 ]. Due to
ultiple sensors and reduced computational load, we used the minimum configuration of the li-
rary’s functionalities. To further minimize the effect of different trial lengths, we removed the sum
nd length features. Due to the lower sampling rate of our 17-IMUs setup as compared to single-
ensor approaches [ 53 ], we did not extract features from the frequency domain. However, we note
hat our released dataset will allow the research community to feed more features of TsFresh into
he neural network [ 45 ], take advantage of a single feature, such as derivatives as input into the
eural network [ 84 ], or further perform feature engineering for input in non-neural-network or
eural-network classifiers to improvise the recognition rate based on the optimal location. In Sec-
ion 4.1 , we show the correlation of our selected features and a different set of features from related
ork to show the correlation in the ranking of layouts. 

Method . We selected 10 random participants as training set and the remaining two as test set
80:20 split) and created grasp-independent models, i.e., the class labels do not include any grasp
nformation. We also performed a leave-one-person-out analysis in Section 4.5 . For our multi-class
lassification, we used 19 classes: (3 fingers × 6 gestures) + 1 Static hold. Different IMU layouts
ay contain different amounts of IMUs (from 1–17); therefore, to compare different state-of-the-
rt classifiers and estimate the classification time required for the full combinatorial classification,
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 5. Comparison between average F1 score obtained by different classifiers and their training time for 
1,435 IMU layouts. The error bars depict one standard deviation. 
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e evaluated randomly selected 100 layouts for a given IMU count of 1–17, totaling 1,435 layouts.
ote, for count = 1, 16, and 17, the total possible layouts are slower than 100. 

Classifier Selection . We fed our extracted features into multiple commonly used classifiers to
valuate their recognition rate and training time. Specifically, we used scikit-learn’s implementa-
ion of Support Vector Classification (SVC), Logistic Regression (LR), k-nearest neighbors (KNNs),
andom Forest (RF) with max_depth = 30; and PyTorch implementation for Neural Network (NN)
ith 4 fully connected layers of decreasing hidden layer size (n = 1,024, 512, 256, ReLU activation)
nd a final softmax activated classification layer. Only NN models were trained on a GPU machine
nd others on a 40-core CPU. We used the default parameters for all the classifiers to perform
rial-by-trial basis classification. As a performance metric, we used the macro average of the F1
core because it considers both precision and recall. 

Results . As shown in Figure 5 , the F1 score and training time largely depend on the choice
f classifiers. Since we wanted to use the same classifier for multiple settings in the following
nalyses, as well as the later-described computational design tool (see Section 6 )—we opted for
andom Forest. This classifier achieves an average F1 score close to the highest one obtained
y Neural Network while having a lower training time than Neural Network. Furthermore, RF
odels can be easily computed on a consumer-grade CPU machine. In-line with findings from
rior work [ 101 ], our results show that Random Forest Classifier has superior performance than
NN. 
As shown above, our released dataset allows for generating results with various classification
odels techniques. Through our analysis, we found that, while different models may yield differ-
nt accuracy levels, the order of performance of individual layouts is very similar. Specifically, to
nderstand our results’ dependence on a particular classifier, we used F1 scores of all layouts with
ensor count = 1 from the top-performing classifiers, namely KNN, Ridge, RF, and NN. Following
hat, we sorted the results alphabetically by IMU labels. Then, using a pairwise Spearman correla-
ion (as used by Guzdial et al. [ 32 ] for comparing ranked lists), we obtained a correlation of 0.919,
.975, and 0.919 with p < 0.001 for RF vs. KNN, NN, and Ridge, respectively. 
In addition, we conducted a similar analysis to understand the change in the ranking of IMUs

or different sets of features. We selected five features (maximum, minimum, mean, skewness,
nd kurtosis) used in the existing literature on IMU sensing [ 28 ] and trained 17 models with RF.
ubsequently, similar to the analysis comparing different classifiers, we calculated the Spearman
orrelation on the F1 score of alphabetically-sorted IMU’s list from both feature sets. Our results
how a high correlation of 0.995 with p < 0.001 between the layout ranking produced by 2 different
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 6. Full Combinatorial Results : Each circle represents the F1 score for each of the 393 K models clas- 
sifying 19 classes in Freehand, Grasping, and Both Combined (Freehand+Grasping) conditions. The blue 
shows the maximum F1 score, and the green depicts the top 5% layouts in a particular IMU count. 
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et of features, indicating that while selecting other features may result in a different F1 score, the
rder of IMUs remains very similar. 

.2 Identifying Sparse Layouts for a Given IMU Count 

he large count of IMUs offers the possibility of creating vast layout combinations. However, not
very count and layout may produce a similar recognition performance. Therefore, an important
spect that we examined was identifying the best-performing sparse layout for a given number
f IMUs. This analysis provides three major insights: Firstly, it allows us to understand how the
ecognition performance varies with the number of IMUs. Secondly, it gives insights into the in-
erval in which F1 scores fall for any given number of IMUs. Lastly, the results inform the optimal
MU placement location with a fixed budget of sensors [ 10 ]. Of note, we use the term IMU Count

o refer to any given amount of IMUs from 1–17. 

Method . To explore the full combinatorial space, we trained models with all possible layouts
rom 1 to 17 IMUs on our initial train-test split as described in Section 4.1 . Moreover, to system-
tically understand the variation in performance for both types of microgestures, we performed
his analysis for three conditions: Freehand, Grasping, and Both Combined. This totals to 3 ×
 2 17 − 1 ) = 393,213 models. For each model, we performed multi-class classification with 19 classes:
3 fingers × 6 gestures) + 1 Static hold. Note, Grasping and Both Combined conditions utilized
rasp-independent models; therefore, we did not encode grasp information in the class labels. In
ection 4.6 , we compare our results with grasp-dependent models. 

Results . Figure 6 plots the F1 score on the test set from each 393 K models trained in all three
onditions (Freehand, Grasping, Both Combined), organized by the count of IMUs present in the
odel. We now discuss each condition in turn: 

(1) Freehand microgestures: The results provide a complete overview of the large perfor-
mance difference that depends on the IMU count and, for a given IMU count, on the specific
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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location of IMUs comprised in a model. As shown in Figure 6 (a), the highest F1 score for
count = 1 is 0.62 (M-midd) . Adding a second IMU increases the F1 score to 0.84 (T-midd, M-dist) ;
the F1 score further increases to 0.90 (T-midd, I-prox, M-midd) and 0.93 (T-midd, I-prox, M-dist, R-prox)

with 3 and 4 IMUs, respectively. On the contrary, the lowest F1 score for count = 1 was
0.2 (Forearm) , and for count = 2 was 0.19 (R-prox, Forearm) . Amongst all models, the maximum
F1 score of 0.97 (T-prox, I-dist, I-prox, M-dist, M-midd, R-midd, P-midd, Forearm) is achieved with count =
8. It should also be noted that a F1 score of 0.90 can be achieved with as little as 3 IMUs,
and henceforth only a maximum increase of 4% occurs with the addition of more IMUs.
The F1 score drops to 0.89 when all 17 IMUs are included. To further investigate this drop,
we trained 100 classifiers with random states from 0–99 for count = 17. We only change
the seed values for this investigation, while training classifiers for other analyses have
a constant seed value with default parameters to allow reproducible results. Out of 100
models, 4 models achieved the maximum F1 score of 0.96, which is close to the maxi-
mum F1 score of 0.97 achieved by some other higher counts. Overall, 93 out of 100 models
achieved an F1 score of greater or equal to 0.90, and only 7 models have an F1 score in
the range of 0.88 (lowest) and 0.89. This explains the reason for the drop we observed at
count = 17. 

(2) Grasping microgestures: Here, our classification setting is more challenging than Free-
hand microgestures due to the inclusion of all 12 Grasp variations. This results in a
slight drop in overall performance (see Figure 6 (b)). For count = 1, the highest F1 score
was 0.54 (I-midd) . Adding an additional IMU (count = 2) gradually increased the perfor-
mance to 0.72 (I-prox, M-midd) , for count = 3 to 0.88 (T-dist, I-prox, M-prox) , and for count = 4 to
0.90 (T-dist, I-midd, I-prox, M-prox) . Similar to Freehand, the IMU located on the forearm achieved
the lowest F1 score of 0.17 for count = 1. Across all models, the maximum F1 Score of 0.93

(T-dist, I-dist, I-prox, M-dist, M-prox, Handback) is first achieved at count = 6. Note, the general pattern
of variation in the maximum and minimum F1 score is similar to the Freehand condition,
and an F1 score of 90% can be observed with a small number of IMUs (count = 4). After-
ward, the maximum increment in F1 score is only 3%. 

(3) Both Combined microgestures: As shown in Figure 6 (c), we observed a similar over-
all trend when gestures in Freehand and all Grasp variations were classified together.
The maximum performance achieved with one IMU was 0.53 (I-midd) . Adding more
IMUs resulted in an increase of F1 score to 0.74 (I-prox, M-midd) , 0.88 (T-dist, I-prox, M-prox)

and 0.89 (T-dist, I-prox, M-midd, M-prox) for IMU count = 2, 3, and 4, respectively. Con-
versely, the minimum F1 score for counts = 1, 2, 3, and 4 is 0.18 (Forearm) , 0.23

(P-dist, P-midd) , 0.26 (P-dist, P-prox, Forearm) , 0.28 (P-dist, P-midd, P-prox, Forearm) respectively. The min
and max difference of the F1 score within each IMU count shows a similar pat-
tern as the other two conditions. Across all counts, the maximum F1 score of 0.92

(T-dist, T-midd, I-dist, I-prox, M-dist, M-midd, M-prox, R-dist) is first achieved with count = 8. At count =
5, an F1 score of 91% is obtained, and only a 1% increase is seen with more IMUs. 

4.2.1 Relevance of each IMU. Multiple layouts may achieve a performance close to the top-most
ayout in each count as shown in Figure 6 . To better understand what locations on the hand and
nger are more likely to contribute to top-scoring layouts, we analyzed the top 5% best-scoring
ayouts (marked in green color in Figure 6 ). Specifically, we introduce an Occurrence Score metric
hat quantifies the occurrences of each IMU in the top 5% layouts (see Equation 1 ). Here, a higher
core of an IMU indicates its frequent presence in the top layouts. For a set I of possible IMUs, the
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 7. Occurrence Score of each IMU in the top 5% layouts from count 1 to 17. Across all IMUs, we observed 
a minimum score was 0.33 and maximum of 0.84. 
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ccurrence Score of an IMU i is 

occ i = 
1 

|I | 
|I | ∑ 

k= 1 

occurrences of IMU i in top 5% layouts with k sensors 

number of top 5% layouts with k sensors 
, (1)

here we calculate the mean of an individual IMU’s occurrence over all IMU counts. It is important
o note that this is not the overall occurrence in the total space of 393 K models but rather how
requently it occurs in the top layouts. 

Results . We examined the Occurrence Score of each IMU as shown in Figure 7 and derived
atterns that guide our further analysis. Since the gestures were performed by Thumb, Index, and
iddle fingers, the IMUs from these three fingers appear more often in the top 5% layouts in all

hree conditions (Freehand, Grasping, and Both Combined). Interestingly, the Occurrence Score
aries greatly across different segments of the same finger. The comparison between Freehand and
rasping conditions revealed three considerable differences: First, we observe that an IMU placed
n the tip of the Thumb (T-dist) has a high Occurrence Score of 0.67 for Grasping microgestures,
hereas it is only 0.33 for Freehand microgestures. We assume this is related to the nature of
estures performed on the palm in the Freehand condition, wherein the Thumb stretches out at
 larger distance and bends lesser than during Grasping microgestures. In a typical grasp, the
humb supports the object; hence the distance to reach the surface for performing a Grasping mi-
rogesture is relatively smaller. Second, for all fingers except the Thumb, Grasping microgestures
end to favor IMU placement on the proximal segment over the fingertip. In contrast, Freehand
icrogestures show a clear tendency to favor placement on the fingertip for Index and Middle
ngers. Below, we investigate the effect of IMU position on classification performance in more
etail. 

Implications . For all three conditions, we noticed that a higher IMU count does not necessarily
ranslate to higher recognition performance. F1 scores close to the optimal can be achieved already
ith a fairly small number of IMUs (3 to 6). We observed a large variation in performance depend-
ng on where a given number of IMUs is placed on the hand and fingers, which also depends on the
icrogesture condition as shown in Figure 7 . These findings highlight the importance of creating
 layout by choosing a right number of IMUs, a right combination of fingers, and finger segments
or the desired set of grasp and microgestures to achieve optimal recognition accuracy. 
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 8. F1 score of single IMU models trained for multi-class classification. The classes include six different 
gesture types possible with each finger (+1 static) for each model during Freehand microgestures. Note that 
different models were trained with IMU on each segment (distal, middle, proximal) and for different gesturing 
fingers. 
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.3 Performance of IMU Placement at Segment Level 

aving identified that the choice of finger segments for IMU placement can be crucial for obtaining
igh recognition performance, we now aim at investigating the influence of finger segments on
ecognition performance more systematically. This also informs the design of minimal form-factor
evices that place IMUs only at the optimal segment. 
Method . We used our initial 80:20 train-test split of the participants’ data and evaluated using

 single IMU under multiple settings. To reduce any effects caused by different grasp variations,
e created grasp-dependent models. Moreover, for a clear understanding of individual fingers and
heir respective gestures, we performed finger-wise classification, i.e., atmost six gestures and one
tatic hold class per finger. Overall, we trained 17 single-IMU layouts × [(1 Freehand × 3 gesturing
ngers) + (9 Grasp variations × 3 gesturing fingers) + (3 Grasp variations × 1 gesturing finger)] =
61 models. For the analysis in this section, we focus on the IMU on gesturing fingers and on three
epresentative grasp variations that have been identified in prior work to each represent a cluster
f Grasping microgestures [ 83 ]. The detailed results, including IMUs on non-gesturing fingers and
ll 12 grasp variations will be released with our dataset. 

Results . As illustrated by Figures 8 and 9 , the F1 score varies greatly across different segments
or Freehand as well as Grasping microgestures. In particular, it indicates that for some cases, the
1 score for a gesture may even rise from 0.0 to 1.0 depending on what segment the IMU is placed
n the same finger. In the following, we highlight this effect for Freehand as well as Grasping
icrogestures. 

(1) Freehand: The kinematics for each finger varies, and the motion required for each ges-
ture is also different. As a result, the F1 score can have a large difference across segments
ig. 9. F1 score of single IMU models trained for multi-class classification. The classes include 6 differ- 
nt gesture types possible with each finger (+1 static) during three exemplary grasp variations (Grasping 
icrogestures). 
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(shown in Figure 8 ). We observed that the optimal segment is different for different fin-
gers. In particular, for Thumb gestures, the middle segment (midd) achieved an average
F1 score of 0.93, whereas the other two segments, i.e., distal (dist) and proximal (prox),
have a relatively lower score of 0.72 and 0.60, respectively. The optimal segment for Index
gestures is different: here, the prox-segment has an average F1 score of 0.91, while the
performance on the other two segments is considerably lower with 0.78 (I-midd) and 0.76
(I-prox). For the Middle gestures, all segments achieved a similar F1 score of 0.60-0.65, the
segment choice is still prominent for individual gestures wherein the performance may
differ with 20–40% for Adduction, Abduction, and Circumduction. In contrast, the perfor-
mance difference across segments is lower for the Tap gesture (10%–13%). Surprisingly,
due to the hand bio-mechanics, the IMU on the Handback can detect Thumb Flexion and
Tap with an F1 score of 0.82 and 0.70, respectively. This finding can be beneficial to de-
tect finger gestures in settings where a user might not want to wear any sensor on the
finger (e.g., while working in a kitchen or car workshop). We investigate this aspect of
recognizing gestures from a non-gesturing finger in more detail in the next section. 

(2) Grasping: Our results reveal a strong influence of segment choice for Grasping microges-
tures (see Figure 9 ). Similar to the Freehand condition, we observed a large difference in
F1 score across different segments of the same finger. Furthermore, it is noteworthy that
there are dissimilarities in the pattern of optimal segment across different grasp varia-
tions. This relates to the distinctive finger postures in different grasps, affecting how a
finger moves while performing the gesture. In particular, for the Thumb and Index ges-
tures on Cylindrical-S and Spherical-S, the dist segment appeared as the optimal segment
in both grasp variations. However, for the Middle finger gestures, the optimal segment is
different across all three grasp variations (Cylindrical-S has dist, Lateral-S has mid, and
Spherical-S has prox). Moreover, the Index and Middle gestures on Spherical-S have a rel-
atively lower variance across segments, which could be explained by the bigger real estate
that affords comparatively larger movements than the other two grasp variations. In gen-
eral, the substantial difference in the recognition performance at the segment level is due
to the intricacies of the grasp variation, finger, and gesture. 

Implications . Depending on the grasp, finger, and type of movement during the gesture, the
ingle-IMU performance across segments greatly varies. This formally validates our initial findings
rom the full combinatorial classification results: The choice of finger segment for the IMU sensor
lacement can have a very strong influence on classification performance. However, since these
lassification results differ based on the subset of grasps and chosen gesture classes, a one-fits-all
esign solution will likely not lead to best results. Hence, we propose a computational design tool
n Section 6 , which provides layout recommendations based on the user-defined parameters. 

.4 Placing IMU on a Non-gesturing Finger 

inger co-activation is a widely known phenomenon in bio-mechanics [ 78 ]. Our goal is to lever-
ge finger co-activation and investigate if micro-movements caused in neighboring fingers are
ufficient for gesture detection from a non-gesturing finger. This would be beneficial in situations
here placement of an IMU on the gesturing finger would hinder the primary activity–e.g., having
n IMU on the Index finger may hinder situations like using a knife. In such scenarios, placing the
MU on an alternative location capable of detecting gestures from a neighboring finger would be
ore desirable. 

Method . To investigate the possibility of detecting gestures with any single finger, we used
ur initial 80:20 train-test split and trained five models for each of the three gesturing fingers;
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 10. F1 score of IMUs placed on gesturing as well as non-gesturing fingers for multi-class classification. 
The classes include six different gesture types possible with each finger (+1 static) for each model during 
Freehand microgestures. T, I, M, R, and P refer to the IMUs on Thumb, Index, Middle, Ring, and Pinky finger. 
The gesturing finger is denoted with a blue circle. 
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ach model comprised a total of three IMUs placed on every segment of the respective finger.
or a detailed analysis, we performed grasp-dependent and finger-wise classification. This gives
 total of 5 fingers w/ IMUs × 3 gesturing fingers = 15 models for Freehand. We trained another
50 models [(5 fingers w/ IMUs × 9 grasp variations × 3 gesturing fingers) + (5 fingers fingers
/ IMUs × 3 grasp variations × 1 gesturing finger]. In each multi-class model, we included all six
estures for an individual finger and the static class - totaling up to seven classes. 

Results . Figures 10 and 11 show the F1 score on the test set for Freehand and Grasping when
odels are trained with IMUs on different fingers. These results indicate the feasibility of detecting
estures from IMUs on the non-gesturing finger: 

(1) Freehand: We observed the effect of finger co-activation and the feasibility of detecting
gestures from IMUs on a non-gesturing finger for all three gesturing fingers (see Figure 10 ).
Unsurprisingly, placing an IMU on the gesturing finger results in a higher F1 score in most
cases. However, it is important to note that depending on the finger and gesture, the IMUs
on a non-gesturing finger can even yield a higher F1 score than when placed on the ges-
turing finger. This is particularly visible with gestures performed by the Middle finger.
This observation is in line with findings from prior work that have reported the middle
finger to induce higher involuntary movement in adjacent fingers [ 78 , 86 ]. For Middle
Circumduction, for instance, the F1 score on a non-gesturing finger (Thumb) increases
by 34% (from 0.67 to 1.00) compared to placing an IMU on the gesturing finger (Middle).
This can be explained by the involuntary Thumb movement caused while performing
the Middle Circumduction on the palm. Also, Index Adduction achieved a 5% higher F1
score through placing IMUs on a non-gesturing finger (Middle) than gesturing finger. Even
though Thumb has the least tendency amongst all the fingers to induce movements in the
neighboring fingers, placing an IMU on the non-gesturing finger (Middle or Ring) pro-
duces a similar F1 score as that on the gesturing finger (Thumb) for Flexion, Extension and
Circumduction. These promising results of placing an IMU on the non-gesturing fingers
show the feasibility of detecting gestures beyond the conventional placement strategies. 

(2) Grasping: As mentioned in prior work, fingers in contact with the object get support,
thereby reducing the effect of co-activation [ 82 ]. Thus, all Thumb and Index gestures on
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 11. F1 score performance of six different gesture types possible with each finger (+1 static) when the 
IMUs are placed on gesturing as well as non-gesuring fingers for three representative Grasp variations 
(Grasping microgestures). 
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Cylindrical-S (Knife) achieved the highest performance when the IMUs are placed on the
gesturing finger. In spite of that, we observed that the non-gesturing finger can detect
Thumb and Index gestures with a drop of only 15–20% from the F1 score obtained by an
IMU on the gesturing finger. While this reduction is considerable, it may be acceptable
for some gestures in settings that do not allow for augmenting the gesturing finger with
IMUs. Based on the grasp type and gesture, the IMUs on the non-gesturing finger may
even achieve a higher performance than the gesturing fingers, e.g., on Spherical-S (Pes-
tle), Thumb Extension and Circumduction achieved a higher F1 score of 0.83 and 0.95,
respectively, through IMUs on the non-gesturing finger (Index). In contrast, the IMUs
placed on the gesturing finger (Thumb) achieved a comparatively lower score of 0.67 and
0.87. On Cylindrical and Spherical grasps, all fingers are in close contact with object but
not all grasp types have the same contact fingers. For example, while holding Lateral-S
(Spoon), the Ring and Pinky fingers are suspended in the air, which causes an involuntary
movement in the other adjacent non-gesturing finger. As a result, the gesturing (Middle)
and non-gesturing (Pinky) finger IMUs achieve a similar F1 score for Middle Abduction
and can also detect Middle Flexion with an F1 score of 0.80 (0.15 lower from the IMUs
on the gesturing finger). Additionally, we observed the possibility of detecting gestures
with non-gesturing fingers that are in contact with the object. With these many different
factors affecting the performance, it is challenging for a designer to place the sensor at an
alternative location intuitively. 
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 12. Comparison of the F1 score achieved on our randomly selected two participants with leave-one- 
person-out. The blue horizontal line corresponds to the average F1 score across 17 IMUs for the previous 
80:20 split, and the grey band shows the standard deviation in the F1 score across all IMU counts. The 
vertical columns represent the average F1 score for each participant, and the error bar represents the standard 
deviation for each participant from count 1 to 17 IMUs. 
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Implications . When the hands are busy, instrumenting gesturing fingers might not be possible
n all cases. For example, while writing, instrumenting fingers involved in gripping the pen might
inder the primary activity. In such scenarios, placing an IMU on neighboring fingers can be effi-
ient. Our findings show that placing IMUs on a non-gesturing finger may enable gesture detection
t a comparable or even higher performance rate. 

.5 Generalizability of Layouts across Participants 

ext, we aim at understanding the extent of inter-personal differences in recognition performance.
his is a crucial question because there can be inter-personal variations in the way the microges-
ures are performed. If there is a large difference in classification results across participants, the
esign tool that we describe in later Section 6 would need to account for it while suggesting a
parse layout. 

Method . A comprehensive Leave-one-person-out ( LOPO ) evaluation with 12 participants ×
93,213 layouts = 4,718,556 models will approximately take 25 days of computation time on our
0-core machine. To circumvent this problem, we first identified the best layout according to the
1 score for a given count of IMUs on our 80:20 participants split from the combinatorial results
btained with the combined condition (Freehand+Grasping). Subsequently, we used these best
ayouts and trained 204 models (12 participants × 17 best layouts for the IMU Counts) for a LOPO
valuation. 

Results . Figure 12 depicts the results of the LOPO evaluation. We observe that the difference in
1 score from our randomly selected 80:20 train-test split and any LOPO model is about ±6%. It
s worth noting that most participants achieved higher performance than our randomly chosen
articipants. 

Implications . Despite the inter-personal variations in how the gestures are performed, our recog-
ition pipeline still scales well and achieves high recognition performance with user-independent
odels. We observed only little variation in F1 scores across participants, which demonstrates that
odel predictions generalize to data from new users. 

.6 Grasp-dependent v/s Grasp-independent Models 

n our combinatorial analysis, we trained grasp-independent classifiers by combining all grasp
ariations. Here, we aim at investigating if these initial results can be further improved if a subset
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 13. Comparison of F1 score achieved by the best layouts until an IMU count = 5 for grasp-dependent 
and grasp-independent models. 
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f grasps is selected. This would be relevant for application cases that comprise selected activities
ith a known set of grasps, or for systems that can identify the current grasp, e.g., by using activity
ecognition. 

Method . We classified all 12 grasp variations separately (grasp-dependent models) by using our
nitial 80:20 split of participants’ data with 19 classes [(3 fingers × 6 gestures) + 1 static hold]. To
ave on the computation time, we performed the full combinatorial evaluation of grasp-dependent
odels until IMU count = 5. There were 12 grasp variations ×∑ 5 

r= 1 
17 C r layouts = 112, 812 models.

Results . For 9 out of 12 grasp variations, the F1 score increased when the model is trained on
 specific activity (see Figure 13 ). Grasps like Lateral-S (Spoon), Tip-S (Needle), Lateral-L (Paper)
howed an improvement in recognition of 20–30% compared to the grasp-independent model. In
ontrast, grasps like Cylindrical-S (Knife) and Tip-L (Pen) did not show any increment, which
an be due to the object’s geometry. Specifically, on such grasp variations, the fingers are tightly
acked, hindering the finger movement while performing gestures. 

Implications . The performance tends to improve if the model is trained for a specific grasp vari-
tion. Therefore, when a subset of grasp-variations are chosen that map to a specific context, our
esults from the combinatorial analysis can further improve. This feature of selecting grasps is also
ntegrated in our later presented design tool for finding a sparse layout. 

.7 Summary of Findings 

he key takeaways from the above in-depth analyses are: 

—More is not always better : Saturation in classification performance is achieved after a fixed
count of IMUs as shown in Figure 6 . In typical cases, a quite low number of 3–4 IMUs
suffices for an F1 score of about 90%. 

—Possible to achieve gesture recognition via IMU on non-gesturing finger : Our findings from
placing IMUs on a non-gesturing finger in Section 4.4 opens up a new avenue for mi-
crogesture detection in HCI by leveraging movement patterns caused by complex hand
bio-mechanics in non-instrumented fingers. 

—Effect of grasp type : In our analysis of Grasping microgestures, we found the F1 score pattern
dissimilar across different grasp variations—due to the influence of grasps on the finger
pose and motions. This ultimately affects the spatial configuration of an optimal layout. 

—User-independent models : We found that a performance of 90% and above with user-
independent classification models. This demonstrates the viability of utilizing IMU-based
input in future consumer-grade systems. 
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Given this multi-factorial design space that influences the classification performance, providing
n automated system to a designer will enable rapid design iterations and decision making for
ptimal IMU placement. Inspired by these findings, we present a rapid technique to identify sparse
ayouts and a GUI-based computational design tool in the following sections. 

 SPARSEIMU: METHOD FOR RAPID SELECTION OF SPARSE IMU LAYOUTS 

raining the models for all layouts of IMUs took about 50 hours (Freehand = 1:27:31, Grasping =
2:41:52 and Freehand + Grasping = 26:20:10). Modifying the set of gestures or objects requires
e-training of the models, as a new setting can influence the importance of specific IMUs. Addi-
ionally, if one wants to explore design variations, like comparing different gesture sets or sets of
bjects, this results in a multiplicative increase in the number of models that need to be trained
nd evaluated. This large computation time makes an exploratory study of IMU layouts very slow
f not impossible. 
To overcome this issue, we propose a method referred to as SparseIMU . It uses a proxy metric
escribing the importance of individual IMUs. As a requirement, this method should be fast to
ompute and correlate well with the results obtained from training all model layouts. Specifically,
he proxy metric is used to derive what IMUs contribute most to the classification. In this work,
e study two such proxy metrics: 

—Feature Importance , also called Mean Decrease in Impurity [ 59 ], which calculates how well
a feature splits the trials into their corresponding classes. This is a natural choice for Ran-
dom Forests, as the same criterion is used to build the trees themselves. Instead of training
and evaluating separate models for each combination of IMUs, this approach requires train-
ing only one Random Forest model that comprises all 17 IMUs. Then Feature Importance,
calculated from this model, indicates how much an individual feature is contributing. For
each IMU, we use multiple features (mean, variance, and so on). Therefore, we aggregate
the features belonging to the same IMU using summation to infer an individual IMU’s im-
portance. Here, the IMU with the highest importance score is essential for the classification,
and the one with the lowest score contributes the least in the classification. 

—Permutation Importance is a posthoc interpretation metric to calculate the importance of
a feature. Here, a model that comprises all IMUs is trained and evaluated on the original
dataset. For a specific feature, all the values in the test data are then randomly permutated;
the feature, therefore, no longer provides useful information. The model is evaluated again
on this corrupted dataset and the difference in performance between the original and the
corrupted dataset is computed. The larger the drop in performance, the more important is
the feature [ 9 ]. This approach needs no further training and only one additional evaluation
for each feature. The importance of an IMU is again calculated by summing the importances
of its features. 

Both proxy metrices provide an importance score for each IMU. Given a desired IMU count
, one could simply choose the layout created from the top k IMUs, based on their importance
core. However, in practice, it is beneficial to expand the search space of possible “top” layouts. In
articular, we search through all possible combinations of the top t IMUs (based on importance)
hosen k at a time ( t C k ). We choose a t such that the total number of layouts possible with the top
IMUs ( t C k ) is at least 1% (or 10% if k < = 3 ) of the total number of possible layouts for the given
ount ( 17 C k ) and train all those ( 

t C k ) models. For instance, if the desired IMU count is k = 5 , we
ould choose t = 9 , since ( 9 C 5 > 0 . 01 × ( 17 C 5 ) and thus we would train 126 models. Additionally,
odifying this threshold of 1% allows for a user-defined tradeoff between evaluation time and
parse layout performance. 
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 14. Comparison between the F1 Score of layouts from the maximum combinatorial (see Figure 6 ) and 
F1 score achieved by the layouts recommended from Feature and Permutation Importance. 

Fig. 15. Runtime comparison between SparseIMU method and the Combinatorial Search for all three con- 
ditions: Freehand, Grasping, and Both Combined. 
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.1 Validation of SparseIMU Method with the Combinatorial Maximum 

o benchmark the selections generated from the two proxy metrics (Feature and Permutation Im-
ortance), we use the IMU layouts from our combinatorial results that achieved the maximum F1
core in Section 4.2 . To quantify the differences, we obtain a Spearman’s correlation ( ρ) between
he F1 score from the max. combinatorial layout and the layouts from the two metrics. Permuta-
ion Importance received ρ = 0.7785 for the Freehand, 0.6617 for the Grasping, and 0.8864 for the
ombined condition (all p < 0.005). In contrast, Feature Importance received considerably higher
orrelations, with ρ = 0.8630, 0.9380, and 0.9419 for the respective conditions (p < 0.005). The high
orrelation using Feature Importance is also visible in Figure 14 , where the layouts consistently
btained an F1 score closer to the best performance in the combinatorial results. Therefore, we use
his metric further to calculate the computation time. 

Runtime . We now quantify the significant reduction of computation time required to select
parse layouts with the proposed SparseIMU method using Feature Importance. Given the 323K
odels needed to evaluate the entire combinatorial space, we used our institution’s cluster sys-
em with a 40-core setup. Of note, this high-end configuration machine used in our combinatorial
esults is not widely accessible. In contrast, we evaluate our rapid method’s performance on a com-
odity laptop (8-core MacBook Air). As shown in Figure 15 , the time required to find the sparse

ayout by our method is significantly shorter, despite the use of a commodity laptop. This reduc-
ion is possible due to the considerably smaller number of model training required across each IMU
ount. For instance, if we were looking for a layout with k = 5 IMUs out of n = 17 possible IMUs
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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n the Freehand condition, the time reduces from 3 minutes on the compute cluster to 1 minute on
 consumer-grade laptop. Moreover, for Grasping Microgestures and Both Combined conditions,
t reduces from about 50 minutes to 5 minutes and from 1 hour to about 6 minutes, respectively.
hile it takes longer to find solutions for IMU counts 7–11, we note that the method still performs

ignificantly faster than the baseline. Moreover, we expect that layouts with this large number of
MUs need to be rarely considered, since going beyond 3–4 IMUs will only lead to a maximum
ncrease of 4% in the F1 score, as we have shown above (see Figure 6 ). Overall, the reduction in
ime achieved by our method on a commodity laptop offers strong benefits for rapid iteration. In
he next section, we use our method in a computational design tool. 

 COMPUTATIONAL DESIGN TOOL FOR RAPID SELECTION OF CUSTOM SPARSE 

LAYOUTS 

ased on the SparseIMU method for selecting IMU layouts, we contribute a computational design
ool. It assists designers in the following tasks: 

—Finding a sparse IMU layout that achieves high gesture recognition accuracy: Using the de-
signer’s specifications, the tool selects optimal designs in near real time and indicates the
expected recognition accuracy. This also allows the designer to quickly obtain an initial
understanding of how well a desired set of microgestures can be recognized while the user
is holding certain objects. The design tool assists designers in locating fingers and precisely
locating the segment of the finger where the IMU should be placed. 

—Exploring location alternatives: Considerations of ergonomic wearability or aspects inherent
to certain application cases may restrict the space where IMUs can be deployed on the user’s
hand. For instance, a smart ring with an in-built IMU can be more suitably placed on the
ring finger than the thumb. And an application case involving dexterous manipulation of
objects may benefit from IMUs placed on the proximal phalanges, rather than close to the
fingertips. The tool allows the designer to restrict what locations can be augmented with
IMUs, and to quickly explore alternatives. 

—Finding gestures that perform well: While it is understood that not all gestures are com-
patible and will have a high performance for a specific set of objects and constraints, one
key functionality of the design tool is to provide a visual representation that depicts the
performance of the individual gestures. This enables the designer to quickly inspect which
gestures perform well and which do not, and choose the most compatible gestures that
offer high recognition accuracy. 

A screenshot of the design tool is shown in Figure 16 . The designer first selects Freehand and/or
 set of Grasp variations(s) that the microgestures should be compatible with. Next, she selects the
et of microgestures that shall be recognized and indicates which fingers are used for gesturing.
hen, the designer can place additional constraints for IMU placement. Entire fingers or individual
nger segments, as well as the back of the hand or wrist can be added or removed from the set
f possible locations. As the last step, the designer selects the desired number of IMUs, to tradeoff
etween a minimal or more complete instrumentation of the hand. With the click of a button, the
MU layout is then selected. 
To visually present the recognition accuracy of chosen gestures, the tool displays a confusion
atrix, along with the location of the individual IMUs on the hand. If the designer is not satis-
ed with the Tool’s recommendation, she can quickly explore options in an iterative manner. For
nstance, she may fine-tune the set of gestures or explore alternative locations for placing IMUs. 

Implementation . It is noteworthy that our tool is different from a conventional lookup table
hich would require 17.5 trillions of entries to cover the various combinations of IMUs, subsets of
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 



39:24 A. Sharma et al. 

Fig. 16. Screenshot of the computational design tool for designing sparse IMU layouts. (a) User can select 
Freehand and/or multiple Grasp variations. (b) The tool automatically recommends possible gesture com- 
binations with three fingers. (c) Additional constraints with respect to the placement of the IMUs can be 
specified. (d) The number of required IMUs can be selected and button click generates the results in form of 
(e), a confusion matrix showing the gesture-wise performance and an overall estimated F1 score, and (f), the 
location of the IMUs present in the sparse IMU layout. 
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estures, and grasp variations. Instead, by training only a few models using the SparseIMU method,
ur tool supports every possible custom user input while minimizing the computational complex-
ty and storage. Furthermore, it allows the designer to rapidly iterate on multiple custom input
ptions. Specifically, the tool uses the microgestures dataset and the SparseIMU method to identify
he optimal IMU layout for a given set of requirements and constraints. The tool creates new classi-
cation models with our initial 80:20 split of train and test data. In addition to the required gestures,
 Static hold is automatically added as a negative class. For generating the confusion matrix and an
stimated accuracy, we use our test set. The Flask web framework for Python was used to create the
ool’s back-end. The front-end was styled using the Bootstrap toolkit, and JavaScript was used for
lient-side scripting. The Snap.svg JavaScript library was used to render the selected IMU layout. 

.1 Tool Evaluation 

n addition to the validation of the SparseIMU method in Section 5.1 , we performed another bench-
arking to compare the tool’s output with the combinatorial results when the designer applies
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Table 1. Comparison of Maximum F1 Score from Combinatorial Search and Tool Output for Six Example 
Cases. It Includes the Randomly Selected Grasp Variations, Gestures, User-defined Constraints, and 
Required IMU Count. For the Classification, We also had a Negative Class (Static hold) in each Case 
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onstraints and opts for choosing a subset of grasp variation and gestures. Therefore we created
ix example cases covering all three conditions. We randomly selected grasp variations, gestures
nd added finger-wise placement constraints. Informed by results from the first validation study,
e chose two variations of IMU counts that we consider particularly promising for applications:
 IMUs for a good recognition performance with very good wearability due to the low number
f IMUs; and 5 IMUs for further increased recognition performance with a level of wearability
hat is still acceptable in many applications. We compared our tool’s estimation by creating new
ombinatorial results for each case. 

Results . Table 1 lists the example cases along with the results. In five out of six cases, the tool
elected layouts that achieved an F1 score that was as high as the best-performing combinatorial
esult or a maximum of 2% lower. The largest difference of 8% occurred in case 4, wherein the tool
elected a layout with an F1 score of 0.92, while the best-performing combinatorial layout achieved
 full 1.00. Noteworthy, the tool also performed well in case 3, in which most of the randomly
elected gestures involve the Middle finger whereas the constraint was to exclude the Middle finger
rom placing IMUs. Despite this demanding constraint, the tool successfully selected a layout that
chieves performance close to the layout found by exploring the entire combinatorial space. 

 APPLICATION SCENARIOS 

n this section, we present a set of four scenarios, each illustrating a realistic application of freehand
nd grasping microgestures with different design requirements and constraints. We demonstrate
ow our computational design tool can assist designers in deciding between various layouts, which
s a non-trivial problem potentially requiring a tradeoff, and can help in refining IMU-based sensing
olutions. 

.1 Kitchen: Supporting Diverse Objects with Minimal Instrumentation 

mart kitchens, providing in-situ instructions while cooking, has been a popular research area over
he last decade [ 50 ]. We envision our computational design tool to support a designer, Alice, in the
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 17. Supporting diverse objects (a) with minimal instrumentation (b) in a smart kitchen scenario requires 
a tradeoff between F1 score and IMU postion (c). 
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evelopment of an in-situ recipe manager that supports information access using microgestures
hile cooking. For her first prototype, Alice wants to enable microgestures on four objects com-
only found in the kitchen: knife, bottle, cup, and pestle (cf., Figure 17 (a)). For browsing a recipe,
er application requires a small, concise set of gestures : back (abduction), forward (adduction), and
elect (tap). Due to frequent hand washing, the layout should be minimal (1 IMU) and restricted
o the back of the hand or wrist (cf., Figure 17 (b)). 

Tool Output: With the selection of objects and gestures (and no further constraints imposed),
he computational design tool suggests the thumb as a common finger capable of performing all
esired gestures, and the thumb’s middle segment for IMU placement. Being “most ideal”, this
ensor location achieves an F1 score of 99.4% (cf., Figure 17 (c)). However, Alice, excluded the fingers
s sensor locations for sanitary reasons. This restrains sensor placement to the back of the hand and
rist, which achieve an F1 score of 76.8% and 56.6% respectively. For both, the confusion matrices
eveal that the adduction gesture has a lower score, likely due to the large distance between the
MU and the gesturing finger. As a result, Alice settles on a tradeoff between IMU location and
vailable gestures. To keep the IMU position on the back-of-the-hand, she updates her design to
nclude only tap and abduction gestures, increasing F1 score to 82.6%. 

.2 On-the-Go Interaction 

7.2.1 Sensor Placement on Non-Gesturing Finger. As voice user interfaces are oftentimes prone
o false activation [ 80 ], wake-gestures are an attractive remedy [ 73 , 105 , 106 ]. Bob aims at exploring
ake-gestures that work in on-the-go scenarios where both hands are occupied, e.g., while car-
ying two bags or a box (cf., Figure 18 (a)). Furthermore, he intends to leverage an existing smart
ing that he intends to “hack” to access its IMU data. It does not matter which finger performs
he gesture. However, ideally, the ring would keep its current position: worn on the ring finger’s
roximal segment. 

Tool Output: Bob starts by evaluating the circle gesture performed with the thumb and the
MU present on the ring finger. The tool outputs an F1 score estimate of 82.2%. As wake-gestures
hould be resilient to false activation, Bob is not satisfied yet and explores further possibilities. As
he position of the IMU is non-negotiable, he includes index and middle as gesturing fingers which
chieve an F1 score of 87.3% and 97.5% respectively. The middle finger’s promising performance
97.5%) is explained with the higher co-activation sensed on the ring finger (where the sensor is
orn). Here, the computational design Tool allowed Bob to iteratively explore the gesture space
nd finally arrive at a tailored solution. 
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 



SparseIMU 39:27 

Fig. 18. An on-the-go scenario (a) with pre-defined sensor placement on a non-gesturing finger (b) leverages 
co-activation (c). 

Fig. 19. Supporting Freehand (a) with minimal but clearly distinguishable gesture set (b) in a running sce- 
nario with a restricted placement choice (c). 
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7.2.2 Finding Unambiguous Combination of Gestures. Listening to music while running is a
ypical combination, but controlling the music app on a smartphone or smartwatch’s touchscreen
equires Taylor, a frequent runner, to take unplanned breaks as shown in Figure 19 (a). Convention-
lly, she needs to pause her run for performing the desired command (switch tracks or play/pause).
hese frequent and unnecessary halts for simple inputs affect her lap timings. She would prefer to
se her middle finger for gesturing since she keeps switching the index and thumb poses in differ-
nt fist forms while running. Her requirements are only for three gestures, including Tap, Flexion,
nd Extension. Also, due to vigorous hand movements and to keep the IMU firmly attached to her
nger, she chooses to place the IMU ring in the proximal segment, which can be on any finger (see
igure 19 (b)). 

Tool Output: Taylor started by opting for Freehand gesture and then made her gesture choices,
nd selected all fingers’ proximal segment. As one’s intuition, the tool suggested placing the IMU
n the Middle Finger’s proximal segment. It predicts an estimated score of 87.2%. By analyz-
ng the confusion matrix, Taylor found out Flexion and Tap gestures get confused and subse-
uently decided to find the performance of other gestures. Using the rapid evaluation provided
y the tool, she found out that replacing Flexion with Abduction solves this issue, and an esti-
ated F1 score of 95% is possible (see Figure 19 (c)). Here, the tool was beneficial in finding an
lternative gesture that can be detected at a higher performance while preserving all the other
equirements. 
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Fig. 20. Minimal setup with 3–4 IMUs (a) with maximum diverse set of gestures (b) finding the balance 
between gestures and accuracy. 
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.3 VR Controller: Diverse Gestures with Minimal IMUs 

xploring diverse gestural inputs for VR [ 48 ] has been a popular area for experimentation in HCI
nd media arts. Dan plans a VR media arts installation which uses microgestures on a hand-held
R controller to contrast private and public interactions by subtly expanding the controller’s range
f functions. Thus, as demonstrated by [ 38 ], he aims for a miniaturized device equipped with 3–4
MUs in combination of a commodity VR controller. He wants to avoid placing IMUs on the index
nger which operates the VR contoller’s push button and also not use it as a gesturing finger. To
acilitate playful public or private interactions, he hopes to support as many different gestures as
ossible. 

Tool Output: Dan explores the solution space for all possible IMU locations excluding the
ndex finger (14 IMUs total). The tool yields an F1 score of 80.2% if 12 gestures are supported.
an iteratively decreases the IMU count (while keeping the amount of gestures to 12) inspect-
ng performance after each decrement. He identifies a saturation in F1 score at 3 IMUs (80.5%),
hich illustrates that a higher number of IMUs does not necessarily imply better performance (cf.,
igure 20 (c)). After further tweaking their configuration, Dan settles on a 3-IMU configuration and
 set of 10 gestures. This choice is a tradeoff allowing for a relatively high amount of gestures while
till achieving an F1 score of 84.3%. As Dan aims for a rather playful, explorative VR installation,
e considers this level of score acceptable. This highlights how the choice of a final layout depends
n the weight the designer assigns to the different parameters (e.g., amount of gestures vs. per-
ormance) which in turn strongly related to the specific application (e.g., playful vs. safety-critical
urposes). 

.4 Electronics Workshop: Microgestures while Performing High-Precision Tasks 

arla seeks to explore how users can make use of microgestures to access additional instructions
uring high-precision tasks such as soldering. She envisions tools such as a soldering iron, sol-
ering lead, or a screwdriver (cf., Figure 21 (a)). As these tools are not available in our dataset, she
ses our computational design tool to make an informed best guess by determining a set of initial
ayouts to elaborate on. Here, our Tool draws strength from the similarity in grasp types: the sol-
ering iron (not present in the dataset) is typically held in a fashion similar to the pen (present in
he dataset); holding fine soldering lead or wire in place resembles holding a needle, and holding
 screwdriver demonstrates a similar (cylindrical) grasp like holding a knife. Carla envisions four
estures: forward, backward, select, and circle which she intends to use to browse an instruction
anual. She furthermore excludes the thumb and index finger–both as gesturing fingers and for
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 21. Transfer of grasps (a) with restrictions on Thumb and Index (b) finding the optimal finger segment (c). 
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MU placement–to not interfere with the high-precision soldering task, and constrains the number
f IMUs to 2 or 3 (cf., Figure 21 (b)). 

Tool Output: The computational design tool suggests placing the IMUs on the middle finger
hich achieves a competitive F1 score of 88.7% when 3 IMUs are used. Yet, at closer inspection,
he tool also reveals that accuracy varies depending on the finger segment on which the IMU is
laced, ranging from 80% to 88%. Hence, the choice of finger segment is crucial. Moreover, the
ool shows that there is only 2% gain in score from placing 3 IMUs on the middle and pinky finger
88.7%), compared to only one IMU on its middle segment. Thus, a single IMU is sufficient to cover
ll gestures Carla had planned for her scenario. Further exploration shows that an increase in
ccuracy can be obtained for the 1-IMU layout to 93.4% by removing the adduction gesture (cf.
igure 21 (c)). As follow-up, Carla conducts a small-scale data collection using the 1-IMU layout
ecommended by the tool. Here, the tool provided a best guess in terms of IMU placement and
esture choice which served as a strong foundation for further iterations. 

 COMPARING THE TOOL’S OU TPU T WITH LIVE GESTURE RECOGNITION 

o further demonstrate the tool’s practical usefulness and generalizability to real-world applica-
ions, we collected another dataset with different hardware configurations and participants. This
ection compares the predicated F1 score from the computational tool with another system de-
loyed for live gesture recognition. 

Apparatus . With a focus on mobility and wearability, we developed a working wireless system
hat consists of a 9-Axis IMU (MPU9250, InvenSense Inc., CA, USA) and a Bluetooth module. As
ith previous work for gesture detection with a low-power wearable device [ 17 ], we sampled the
ccelerometer at 35 Hz (lower than in our microgestures dataset). Similarly, the gyroscope and
agnetometer were sampled at 35 Hz. For powering the device, we used a 2000mAh (DTP634169)

ithium polymer battery. We also created a 3D printed casing with hooks to attach velcro straps so
hat the device can be easily worn on different fingers and varied hand sizes. An additional velcro
trap and adhesive tape were used to affix the battery to the arm such that it would not interfere
ith hand actions. We created two such devices (as shown in Figure 22 (a)) and synchronized them
o enable data collection from multiple hand segments simultaneously. Raw data from the devices
s wirelessly streamed over Bluetooth to a PC for live classification. 

Scenarios . To keep the data collection feasible, we selected three scenarios from Section 7.1 , 7.2.1 ,
nd 7.2.2 . These represent multiple settings with gestures on diverse objects, on-the-go interaction
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Fig. 22. Minimal wireless hardware with battery (a); scenarios involving multiple objects and freehand (b); 
live classification of gestures (c). 
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ith sensor placement on the non-gesturing finger, and finding an unambiguous combination of
estures for freehand input, as shown in Figure 22 (b). 

Participants . We recruited 6 right-handed participants (3 M, 3 F, mean age: 22.2; SD: 2.5) with an
verage hand sizes from Wrist to the tip of Thumb = 132 mm (SD: 9 mm), Index = 168 mm (SD:
0 mm), Middle = 175 mm (SD: 12 mm), Ring = 163 mm (SD: 10 mm), Pinky = 144 mm (SD: 10 mm).
t is noteworthy that all 6 participants were different from those who participated in creating the
icrogestures dataset (Section 3.4 ). 

Task and Procedure . We used the same procedure as described in Section 3.5 i.e., we counter-
alanced the two conditions (Freehand and Grasping) and further counterbalanced the order of
bjects in each scenario. Once the object or freehand condition was selected, we presented the
esture/non-gesture states in a randomized order. We developed a custom software tool using
lask framework in Python to label the trials that the experimenter controlled during data collec-
ion. Overall, we recorded 5 trials for each gesture and Static hold for a negative class, totaling
70 trials (145 trials per participant), comprising 10 unique gestures and static hold classes on
 different object/grasp types. 
To evaluate a potential bias resulting from orientation, the data collection for this experiment
as performed in a room that was different from the microgestures dataset. Additionally, the ori-
ntation of the participants was rotated by 90 degrees left from their original orientation in the
icrogestures dataset. The sitting/standing posture and the start and stop for labeling were simi-

ar for all scenarios as in the microgestures dataset, except for the scenario with freehand gestures
Figure 22 (c)). Here, we kept the posture to standing as defined in the scenario and marked the
tart and stop of gestures when the arm started swaying upwards from the standstill posture and
eturned to the initial state. Hence, the assumption is that even though coarse hand movement is
nvolved, IMU placement is still crucial for detecting fine finger movements (gestures). The com-
lete data collection for each participant took about 45 minutes. 

Feature Extraction and Classification Model . In order to perform a systematic comparison, we
xtracted the same six features as used in the analyses above and in the computational design tool.
hese features are mean, median, minimum, standard deviation, and variance calculated from each
f the 9-axis of the IMU. It is important to note that live classification requires a time window of
treamed data as opposed to our tool in which we classified the entire trial. Therefore, the features
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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Table 2. Comparison of F1 Scores from the Computational Design Tool Output and Live Classification. 
For Each of the Three Scenarios, the Object/Grasp Information, Gesture, and Location of IMU 

Placement are Described. We also Included a Negative Class (Static hold) wrt. Objects/Grasps. For Each 
Scenario, the Normalized F1 Score of a Configuration is Calculated by Normalizing It to the Highest 

Achieved F1 Score. For Completeness, We also Report the Absolute F1 Score Obtained for Each 
Configuration Below the Ranking. The Performance Ranking is Denoted in Roman Characters 
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ere extracted on a window size of 90 and an overlap of 70 frames—only for the data collected
n this study. The tool configurations remain untouched, which extracts features over the entire
rial. We also used the same classifier with default parameters as used in our computational tool,
.e., Random Forest (RF) with max_depth = 30. We trained a separate grasp-independent multiclass
odel (not encoding grasp/object information in the class labels but only gestures) for each sce-
ario and IMU placement. Since our participant count is lower than in the microgestures dataset,
n addition to the user-independent models with leave-one-person-out cross validation training
nd testing, we also created user-dependent models and evaluated with leave-one-trial-out cross
alidation technique. 

Results . Table 2 shows the comparison between the estimated F1 score from the computational
ool and the performance achieved in the live classification. To understand the relative perfor-
ance across configurations within a scenario, we calculate their normalized F1 score. The nor-
alized F1 score is calculated by normalizing the F1 score of a given configuration with respect
o the highest-performing configuration within this scenario. The table shows the normalized F1
cores (represented as percentages) along with absolute values for completeness. We observed
hat even with different hardware and participants, the results for live recognition are in congru-
nce with the tool’s prediction. Specifically, the tool correctly predicts the performance ranking
f configurations, and the normalized F1 scores across configurations matches reasonably closely.
f course, this does not hold true for the absolute values, which strongly depend on the (largely
iffering) settings of a configuration (live classifier, different hardware, model, train trials). How-
ver, the normalized F1 score gives an indication of what changes (improvement or deterioration)
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o expect when switching from one configuration to a different one. It is noteworthy that our
esults are consistent for all three scenarios with user-dependent as well as independent models,
emonstrating the generalizability of our method. 

 DISCUSSION, LIMITATIONS, AND FU T URE WORK 

hile this work takes a significant first step toward the rapid dense-to-sparse exploration of IMU
ayouts for finger microgestures, there are several aspects that need to be considered for extending
his line of research: 

.1 Grasps, Objects, and Gestures in and beyond the Microgestures Dataset 

hen constructing our dataset, we leveraged prior work on grasp types [ 79 ] to build six categories
nd selected representative small and large objects as well as corresponding realistic actions (cf.,
igure 3 ). While exhaustively covering all conceivable objects for each grasp type is impossible,
e anticipate generalizability for objects not present in the dataset. A few characteristics of finger
ovements directly depend on the grasp type and hence generalize for objects beyond the ones
resent in the dataset, such as the feasibility of gestures with a specific finger, and the co-activation
f the non-gesturing finger. There are a few other characteristics of object manipulation which
ight not be generalize and which future work needs to address. For example, two objects may
fford the same grasp type but fulfill different purposes (e.g., pen vs. soldering iron) and require
ifferent movements (fluent writing vs. a steady hold for soldering). Our computational design tool
ncorporates this limitation by assuming the user would briefly pause the primary activity while
eeping the object in hand. The additionally collected activity data allows future work to use it for
ransfer Learning [ 109 ] as both gesture and non-gesture conditions are present. 
Moreover, future work may choose to augment our dataset with additional objects and activities
r gestures. A promising area to expand to are rhythmic gestures incorporating a larger temporal
uration, or repetitive gestures (e.g., double taps), which indicate benefits such as robust wake-
estures or hot words [ 54 ]. It will also be relevant to study objects with advanced material prop-
rties, such as pronounced surface texture, friction, or deformability. For reasons of feasibility, our
ataset contains gestures performed by Thumb, Index, and Middle fingers. Future work should
nvestigate gestures performed by other fingers. Our dataset is collected using right-handed and
oung participants. Future work may study how this data generalizes to other populations such
s the elderly (potentially limited range of motion, tremor) or children (smaller hands). We have
arefully selected different object geometries that afford different orientations of hand and fingers
o reduce potential dataset bias. For instance, the thumb faces upwards while holding the book,
ut it is sideways while holding the bottle. As a next step, future work may use data augmentation
echniques to arbitrary facing (or even orientation) of the head by adding randomized orientation
ffsets to the raw data [ 97 ]. 
Data collection and labeling is a well-known problem in HCI and Machine Learning; the
anually-labeled frames in our dataset can provide a quality source for auto-labeling of new data,
educing the tedious manual efforts of data labeling. Finally, it is worthwhile mentioning that our
ataset offers a starting point to enable always-available input using IMUs. However, it would be
ruitful if future works investigate effortless methods for data collection and labeling in the wild. 

.2 Computing, Refining, and Transferring Layout Suggestions 

n this work, we contributed a tool that assists in rapidly iterating through layout suggestions for
MU placement. We understand our computational design tool’s output not as a final choice, but
s a “best guess” for further refinement. For instance, if a layout with multiple IMUs is selected, an
nverse kinematics (IK) model could be applied post-hoc to the set of suggested layouts to further
CM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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everage the inherent co-activation between the fingers and refine the final layout. Analogously,
he current version of our tool comprises F1 score as evaluation criteria, but does not cover other
etrics. In cases where robustness against false activation is a key design concern, individually
howing precision/recall scores might be beneficial. Likewise, while our tool’s design is relatively
asy to use, visually depicting the gestures to instruct new users and strategies for an alternative
epresentation of the confusion matrix and the F1 score can help understand the classification
esults. 
We anticipate that the tool’s layout suggestions can serve as a valuable starting point to quickly

educe the design space and for further improvement of performance in an end-to-end working
ystem. Additional techniques such as collecting more training data to include additional varia-
ions, adding more features, performing hyperparameter tuning to tailor the classifier’s behavior
o the specific dataset, creating an ensemble of classifiers, and optimizing the hardware’s sample
ate to improve the recognition rate can be applied, if desired. Our findings show that grasp-
ependent models may further improve the classification performance. This also suggests that the
ombination of target Freehand and/or Grasp variations affects the model’s performance, where
ur computational design tool can be useful in rapid testing and iterations to find the balance be-
ween users’ choice and classification performance. Currently, our tool suggests sensor placement
ased on gestures and finger choices. However, future work would include multiple alternatives
t the first go or even further, it may work conversely as well, i.e., given the placement choice of
ensors and the count, the tool will recommend the best gestures that can be detected. Inspired by
ohlsdorf et al. [ 49 ], future versions of the tool may also incorporate techniques to estimate the
hances of false positives for each gesture by comparing the selected gestures to a large corpus
f everyday activity data. This would facilitate the end-to-end framework for gesture recognition
nd the practical implications of real-world deployments. 
While we performed user-independent evaluations in our analysis, in our initial tests, we found

he performance of user-dependent models is higher with the same model architecture. With the
dvances in deep learning models and their interpretability methods, we believe a more sophis-
icated model pipeline can be constructed based on our analysis results. This would also help
esearchers in benchmarking different techniques to select sparse layouts. 
Our current layout selections are measured by classification performance, but other factors like

he required amount of training data, battery performance, hardware cost, or dimensions of the
ensing device could be integrated into future versions of the tool. We also see some possibility that
uggestions prove useful beyond their application with IMU data. While there is some uncertainty,
ther approaches making use of high-dimensional data from different sensors (e.g., EMG/FSR [ 16 ,
5 , 77 ]) can potentially expand upon the suggested layouts. 

0 CONCLUSION 

n this work, we presented the first computational design approach for realizing sparse IMU lay-
uts to recognize microgestures effectively—with hands-free and while holding everyday object
onditions. Our SparseIMU method that uses a customized version of a well-known ML metric (Fea-
ure Importance) to select sparse IMU layouts rapidly. We also contributed a computational design
ool that selects sparse IMU layouts based on higher-level inputs (objects, gestures) and constraints
e.g., choice of placement) specified by the designer. We empirically validated the accuracy of the
MU layouts selected by our design tool with the combinatorial results obtained by training 393,213
odels. Selecting a sparse layout with our SparseIMU method is significantly faster than exploring
he complete combinatorial space and shows a high quantitative agreement. We also contribute
he first microgestures dataset, consisting of 18 gestures and 3 non-gesture states performed with
reehand and 12 objects covering all the six grasp types. Using a dense network of 17 synchronized
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 39. Publication date: June 2023. 
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MUs placed all over the dominant hand, we collected the data from 12 participants. Our dataset
omprises fully annotated dense IMU data consisting of 13,860 trials (3 million frames). Through
ur dataset, we believe new insights can be derived not only for HCI research but might also be
elpful for an array of other fields, including machine learning, optimization, and bio-mechanics.
Our analysis revealed three major findings: (i) With only 3–4 IMUs, an F1 score of about 90%

an be achieved in a challenging classification task with 18 classes of Freehand and Grasping mi-
rogestures, (ii) placing an IMU on a different segment on the same finger may significantly affect
he classification performance, and (iii) we demonstrated the feasibility of detecting gestures with
n IMU placed on a non-gesturing finger. Finally, through a set of systematically designed applica-
ion cases and a user study, we demonstrate how our computational design tool enables designers
o employ a rapid and iterative design process for realizing microgestures for diverse scenarios
cross multiple objects. Our contributions in this article take advantage of fingers’ dexterity and
ncover the sensing potential of IMUs towards bringing computing at user’s fingertips—practically
ver y where and always. 
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