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Abstract

Gestural user interfaces for computing devices most commonly require the user to have at

least one hand free to interact with the device, for example, moving a mouse, touching

a screen, or performing mid-air gestures. Consequently, users find it difficult to operate

computing devices while holding or manipulating everyday objects. This limits the users

from interacting with the digital world during a significant portion of their everyday

activities, such as, using tools in the kitchen or workshop, carrying items, or workout with

sports equipment.

This thesis pushes the boundaries towards the bigger goal of enabling always-available

input. Microgestures have been recognized for their potential to facilitate direct and subtle

interactions. However, it remains an open question how to interact using gestures with

computing devices when both of the user’s hands are occupied holding everyday objects.

We take a holistic approach and focus on three core contributions: i) To understand

end-users preferences, we present an empirical analysis of users’ choice of microgestures

when holding objects of diverse geometries. Instead of designing a gesture set for a specific

object or geometry and to identify gestures that generalize, this thesis leverages the

taxonomy of grasp types established from prior research. ii) We tackle the critical problem

of avoiding false activation by introducing a novel gestural input concept that leverages a

single-finger movement, which stands out from everyday finger motions during holding and

manipulating objects. Through a data-driven approach, we also systematically validate

the concept’s robustness with different everyday actions. iii) While full sensor coverage on

the user’s hand would allow detailed hand-object interaction, minimal instrumentation

is desirable for real-world use. This thesis addresses the problem of identifying sparse

sensor layouts. We present the first rapid computational method, along with a GUI-based

design tool that enables iterative design based on the designer’s high-level requirements.

Furthermore, we demonstrate that minimal form-factor devices, like smart rings, can be

used to effectively detect microgestures in hands-free and busy scenarios.

Overall, the presented findings will serve as both conceptual and technical foundations

for enabling interaction with computing devices wherever and whenever users need them.
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Zusammenfassung

Benutzerschnittstellen für Computergeräte auf Basis von Gesten erfordern für eine Inter-

aktion meist mindestens eine freie Hand, z.B. um eine Maus zu bewegen, einen Bildschirm

zu berühren oder Gesten in der Luft auszuführen. Daher ist es für Nutzer schwierig,

Geräte zu bedienen, während sie Gegenstände halten oder manipulieren. Dies schränkt die

Interaktion mit der digitalen Welt während eines Großteils ihrer alltäglichen Aktivitäten

ein, etwa wenn sie Küchengeräte oder Werkzeug verwenden, Gegenstände tragen oder mit

Sportgeräten trainieren.

Diese Arbeit erforscht neue Wege in Richtung des größeren Ziels, immer verfügbare

Eingaben zu ermöglichen. Das Potential von Mikrogesten für die Erleichterung von direkten

und feinen Interaktionen wurde bereits erkannt. Die Frage, wie der Nutzer mit Geräten

interagiert, wenn beide Hände mit dem Halten von Gegenständen belegt sind, bleibt

jedoch offen. Wir verfolgen einen ganzheitlichen Ansatz und konzentrieren uns auf drei

Kernbeiträge: i) Um die Präferenzen der Endnutzer zu verstehen, präsentieren wir eine

empirische Analyse der Wahl von Mikrogesten beim Halten von Objekte mit diversen

Geometrien. Anstatt einen Satz an Gesten für ein bestimmtes Objekt oder eine bestimmte

Geometrie zu entwerfen, nutzt diese Arbeit die aus früheren Forschungen stammenden

Taxonomien an Griff-Typen. ii) Wir adressieren das Problem falscher Aktivierungen durch

ein neuartiges Eingabekonzept, das die sich von alltäglichen Fingerbewegungen abhebende

Bewegung eines einzelnen Fingers nutzt. Durch einen datengesteuerten Ansatz validieren

wir zudem systematisch die Robustheit des Konzepts bei diversen alltäglichen Aktionen.

iii) Auch wenn eine vollständige Sensorabdeckung an der Hand des Nutzers eine detaillierte

Hand-Objekt-Interaktion ermöglichen würde, ist eine minimale Ausstattung für den

Einsatz in der realen Welt wünschenswert. Diese Arbeit befasst sich mit der Identifizierung

reduzierter Sensoranordnungen. Wir präsentieren die erste, schnelle Berechnungsmethode

in einem GUI-basierten Designtool, das iteratives Design basierend auf den Anforderungen

des Designers ermöglicht. Wir zeigen zudem, dass Geräte mit minimalem Formfaktor wie

smarte Ringe für die Erkennung von Mikrogesten verwendet werden können.

Insgesamt dienen die vorgestellten Ergebnisse sowohl als konzeptionelle als auch als

technische Grundlage für die Realisierung von Interaktion mit Computergeräten wo und

wann immer Nutzer sie benötigen.
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CHAPTER 1

Introduction

“The hand is the visible part of the

brain.”

Immanuel Kant

Computers are no longer limited to desktops, workstations, and laptops; they have

shrunk from room-sized machines to handheld devices such as smartphones, tablets, and

smartwatches. Despite the integration of other interesting input modalities like eye-gaze

and voice into new devices, gestural input with hands remains the most prevalent, enabling

both precise continuous and quick discrete gestures. Although the trend toward smaller

form factors has created devices that can be carried in users’ pockets or worn on the wrist,

users still need at least one hand free to interact with the devices, for instance, to be able

to touch a screen, hold a controller or perform mid-air gestures.

However, human hands are constantly busy in myriad contexts of everyday life, e.g.,

holding utensils while cooking or eating at home, writing with a pen at the office, carrying

shopping bags down the street, and using a hammer or other repairing tools in the workshop.

Thus, users are unable to interact with their devices while they are performing these

activities, which is a challenging problem that deprives them of always-available input. In

particular, the diverse geometry of objects present in these activities and the interactional

constraints caused by holding a physical object in one’s hand add complexity to gesture

design and recognition. Introducing an input technique in such everyday situations will

enable varied real-world applications — ranging from skipping a music track on-the-go to

controlling critical healthcare systems.

In this thesis, I holistically approach this problem while balancing the needs of the

task at hand and human capabilities. The approach includes drawing insights from

users’ behavior, and capturing and performing quantitative analyses of large datasets.

Furthermore, leveraging machine learning techniques to address the complexity and develop

applications that effectively enable always-available input.
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1.1 Research Challenges

In terms of usability, a practical solution should have consistent gestures across different

objects, which a minimally invasive and low-cost sensing technique can detect. Toward

satisfying these requirements and designing an end-to-end system, this thesis takes a

systematic approach by first understanding the relationship between all five fingers and

various grasp types, then introducing a novel input technique that is resilient to false

activations, and finally providing a computational design tool for rapidly selecting a sparse

sensor layout. The tool enables effective gesture recognition in both hands-free and busy

scenarios with minimal hand instrumentation. Specifically, in my effort toward the vision

of providing always-available input, I aim to answer the following three research questions:

RQ I: How does the multitude of grasp types and object geometries

affect users’ choice of microgestures?

Digital input methods that include microgestures have already proven to be useful for direct

and subtle interaction with ubiquitous computing systems [1–3]. Prior work has systemat-

ically investigated single-hand microgestures in hands-free context [4]. However, gestures

made in hands-free scenarios are likely to differ considerably from gestures performed

when the hands are occupied holding an object. The number of fingers needed for holding

or manipulating a handheld object largely constrains the set of possible microgestures, a

scenario that is comparatively under-investigated in the literature. Pioneering work by

Wolf et al. [5] has contributed an early investigation with 3 objects, while other work has

investigated gestures on self-sustained objects, such as the steering wheel [6]. However, we

still lack a systematic investigation of a more comprehensive set of object geometries and

their respective grasps to investigate the complex relationship between handheld objects

and microgestures. It remains an open question as to what are appropriate gestures from

an end user’s perspective when hands are busy holding an object.

RQ II: How to avoid false activations in gestural input while

handling everyday objects?

While performing quick and convenient gestures on handheld objects is compelling as

an input modality, gestures risk conflicting with finger movements that might occur

when adjusting ones grip or manipulating the object. As a result, a gesture recognizer

might misinterpret natural finger movements as an intentional input gesture and trigger

an unintended command; namely, a false activation. This is a challenging problem for

designing and deploying microgestural interfaces. Yet, to the best of our knowledge, there

is no prior work that systematically investigates robust gestures to perform while holding
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everyday objects. Previous work has presented robust gestures for specific devices, such as

smartphones [7–9], tablets [10], and smart pens [11]. While these approaches perform well

in their specific contexts, a critical limitation is their device-specific behavior. For example,

a flipping gesture might be suitable for smartphones [7], but would not work while holding

a coffee cup. To address this, other work has proposed using a robust delimiter gesture that

must be performed before doing the actual gesture [12]. An alternative approach could be

to involve complicated movements that are unlikely to happen in everyday actions, such as

a specific movement sequences, specific timing, or specific finger combinations. As opposed

to this, it is desirable to incorporate input techniques that are not device-specific but ensure

compatibility with a wide range of grasps and daily actions. Also, the technique should

avoid the cognitive overhead associated with separate delimiters or complicated-to-perform

gestures.

RQ III: What sensor locations on the hand provide effective

recognition with minimal instrumentation?

Implementing a system to detect microgestures in both free-hand and busy-hand conditions

poses significant technical challenges. Apart from the numerous sensor placement config-

urations that can be used to effectively detect dexterous finger movements, recognition

systems need to deal with visual occlusions arising when the hands are occupied. These

challenges make the deployment of optical sensing techniques very demanding [13]. A

common approach to address hand occlusion challenges when manipulating objects is

to use data gloves or a large number of markers. For instance, Han et al. [14] achieved

promising results for hand pose reconstruction while manipulating objects by employing

deep learning combined with markers attached all over the hand. Yet, extensive hand

instrumentation is undesirable for practical use because it would be cumbersome and

interfere with the user’s daily routine (e.g., handling food items or utensils in the kitchen).

The sparse sensing principles provide a technically efficient solution by placing sensors in

an optimal location. Additionally, it could be used to detect microgestures in real-world

scenarios through a minimal form factor device like smart ring(s).

1.2 Summary of Contributions

To approach the problem of providing always-available gestural input with handheld

objects, this thesis investigates various aspects of gestural interface design, from iterative

design to technical implementation. Moreover, as a first step in developing a comprehensive

understanding and providing input with diverse object geometries, I investigated all six

prehensile postures described in Schlesinger’s seminal grasp taxonomy [15] that incorporates
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object shape, hand surface, and hand shape. The taxonomy is widely used in prior work

across domains [12, 16–19]. Specifically, this thesis includes a formative empirical study

about the relationship between finger movements and grasps, design and validation of

a novel gestural concept to avoid false activations, and a method to utilize a minimal

amount of sensors for live gesture recognition. Below is a brief description of contributions

to each research question:

I: Consolidated gesture set while grasping diverse everyday objects

Given the wide variety of object geometries that we hold or use during our everyday

lives, the first aim was to investigate how the multitude of grasps and object geometries

affect users’ choice of microgestures. For instance, would application designers of mobile

computing and the Internet-of-Things have to design a custom gesture set for each object?

From a usability standpoint, it would be highly undesirable and would risk frustrating

users up to the point of rejecting the new opportunities unleashed by such microgestures.

To answer these questions, I used the elicitation method in an experiment with end-users

holding a variety of objects, from as small as a needle to a large box. Subsequently, the

design recommendations are derived for Grasping Microgestures [Sharma et al. 20], a

class of gestures performed by the same hand involved in holding the object. As opposed

to most approaches that have designed gestures based on a particular object/geometry

(e.g., pen), I focused on the generalisability and scalability of the gestures by taking

into account a complete taxonomy of grasp types established from prior work. A full

data-driven interpretation using statistical clustering revealed previously undiscovered

patterns. It identified similarities among different grasp types and ultimately allowed us to

present three main cluster sets of gestures that cover interactions across varied grasp types.

Furthermore, these clusters inform how grasps and object geometries affect single-hand

microgestures, preferred locations, and fingers used.

II: Avoid false activations during everyday hand-object actions

Grasping Microgestures demonstrated the possibility of performing gestures with different

grasp types. However, there is a risk of confusing user-defined gestures with an object or

task-related finger motions. Previous work presented individual device-specific delimiter

gestures that would not be compatible with everyday objects. Also, such delimiting

gestures create an interruption of the task at hand. In contrast, I concentrated on gestures’

compatibility with a wide range of grasps and everyday actions. This thesis introduces

the concept of SoloFinger [Sharma et al. 21] – leveraging the insight that fingers tend to

be static, or multiple fingers simultaneously move when holding and manipulating objects.

Consequently, moving a single finger to a considerable yet comfortable extent while all
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other fingers remain static stands out. This idea opens a space for creating robust yet

easy-to-perform gestures. It also allows for versatile gesture variations (e.g., moving a

finger forward, backward, or drawing a pattern like circle or zigzag). A series of data-driven

analyses was performed on a pre-existing dataset with 36 everyday hand-object actions

to validate the SoloFinger concept. Specifically, the analysis includes formulating a new

metric (PeakScore) to quantify the single-finger movement and developing a white-box

classification technique for human interpretability of the classification errors. In addition,

I also demonstrated the concept’s real-world feasibility by implementing an end-to-end

system with a commercially available virtual reality glove. When the held object is known,

the multi-class gesture classification accuracy was 89%, without any false activation in the

collected dataset.

III: Sparse sensor placement for sensing fine-grained finger micro-

gestures in freehand and grasping conditions

Capturing finger gestures with optical-based sensing is prone to occlusion when hands are

busy holding or carrying objects. Although glove-based solutions mitigate this issue, they

impede usability because of their bulkiness. Inertial measurement units (IMUs) provide

a better solution to effectively recognize microgestures in freehand contexts and while

grasping everyday objects. However, their count and placement are crucial for effective

gesture recognition. Minimal form factor devices can be designed using the principles of

sparse sensing (also known as compressed sensing). For example, two smart rings worn on

optimally selected finger segments can overcome the aforementioned technical limitations.

Designing an IMU layout that is sparse is a difficult task due to the complex multi-factorial

space, which includes freehand or grasping conditions, diverse object geometries, different

fingers, a multitude of gestures, and additional user-defined constraints. Considering the

complexity of the multi-factorial design space, this manual process is time-consuming and

may lead to far sub-optimal layouts. I tackled this problem by creating a computational

design approach, which started with collecting the Microgestures dataset. In particular,

through customized hardware with 17 synchronized IMUs, I captured microgestures and

hand manipulations when users were Freehand and Grasping 12 objects. Consequently,

this thesis introduces the first rapid computational method, SparseIMU [Sharma et al. 22]

to generate sparse layouts for detecting microgestures. I employ a variant of a well-known

metric from Machine Learning (ML), Feature Importance, to rapidly select sparse layouts.

Compared to the combinatorial search that takes hours or days on a 40-core cluster system,

the SparseIMU method can generate the layout within a few seconds or minutes on a

commodity laptop. Notably, the F1 Score from the layout generated by the SparseIMU

method is similar to the best layouts found by training all 400K layout combinations.
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This thesis also presents a GUI-based design tool to help the designers/engineers rapidly

find optimal configurations for IMU-based sensing devices (such as smart rings or other

wearable devices) with minimal hand instrumentation. Furthermore, in-depth analysis

to quantify performance across different possible IMU layouts uncovered the potential of

IMU sensing to detect microgestures.

1.3 Publications

I have published full papers based on the ideas presented in this dissertation at the ACM

Conference on Human Factors in Computing Systems (CHI) [P1, P2], and a journal article

at ACM Transactions on Computer-Human Interaction (TOCHI) [P3]:

P1. Adwait Sharma, Joan Sol Roo, and Jürgen Steimle. “Grasping Microgestures:

Eliciting Single-hand Microgestures for Handheld Objects.” In: Proceedings of the

37th Annual ACM Conference on Human Factors in Computing Systems (CHI ’19),

13 pages [20].

P2. Adwait Sharma, Michael A. Hedderich, Divyanshu Bhardwaj, Bruno Fruchard, Jess

McIntosh, Aditya Shekhar Nittala, Dietrich Klakow, Daniel Ashbrook, and Jürgen

Steimle. “SoloFinger: Robust Microgestures while Grasping Everyday Objects.” In:

Proceedings of the 39th Annual ACM Conference on Human Factors in Computing

Systems (CHI ’21), 15 pages [21].

P3. Adwait Sharma, Christina Salchow-Hömmen, Vimal Suresh Mollyn, Aditya Shekhar

Nittala, Michael A. Hedderich, Marion Koelle, Thomas Seel, and Jürgen Steimle.

“SparseIMU: Computational Design of Sparse IMU Layouts for Sensing Fine-Grained

Finger Microgestures.” In: ACM Transactions on Computer-Human Interaction

(TOCHI ’22), 40 pages [22].

1.4 Thesis Roadmap

This thesis is organized into six chapters. The next chapter presents the related literature,

including taxonomies of grasping, design of freehand and grasping microgestures, and false

activation during gestural input. It additionally covers the state-of-the-art techniques of

gesture sensing, recognition, and computational design tools. Chapters 3 investigates the

user-defined microgestures across different grasp types. Chapter 4 introduces SoloFinger,

a novel concept to avoid false activations. Chapter 5 describes a computational method

and a GUI-based tool for designing sparse sensor layouts. Finally, Chapter 6 provides the

conclusion and opportunities for several future research directions.
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CHAPTER 2

Related Work

Designing and implementing always-available input that caters to a wide group of users

requires expertise and scientific endeavors from multiple research disciplines, including

human-computer interaction, machine learning, and optimization. This chapter focuses

on the related work about crucial areas, from understanding prehensile hand poses while

grasping diverse object geometries, avoiding false activations during input, to sensing and

recognizing gestures efficiently.

2.1 Grasp taxonomies

We use our hands for a variety of daily activities, and many occupations even depend

entirely on them, including but not limited to the chef, warehouse worker, surgeon, and

mechanic. Here, it is worth noting that our hands are constantly busy grasping and

manipulating diverse objects to perform the task at hand, e.g., reading a book or carrying

grocery bags. Heo et al. [23] and Laput et al. [24] compiled a list of such hands-busy

scenarios by reviewing prior literature and conducting an in-the-wild study, respectively.

Previous research has categorized hand-object interaction in three states: Off-hand

(no physical interaction with the object), In contact (hand approaching the object), and

Held in-hand (hand grasping the object) [25]. Considering the scope of this thesis, the

state of Held in-hand is more relevant. Further, grasp taxonomies are used to categorize

various hand poses necessary to hold different object geometries. Several taxonomies of

discrete grasp have been proposed for various goals. Notably, Schlesinger [15] put forth

a seminal taxonomy initially developed by considering the functionality required for the

prosthetic hands. Napier in 1956 [26] presented two basic grips, namely precision and

power, that are derived from anatomical and functional views. Cutkosky [27] derived

a more detailed classification of grasp types by conducting a study in a manufacturing

operation. Feix et al. [28] analyzed the literature and presented a taxonomy with 33
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different grasp types. This taxonomy encompasses several grasp types, but it’s important

to note that for only a subset of object geometries, it distinguishes between different object

sizes and separates grasps based on which finger is grasping the same object. In our work,

we investigated all six prehensile postures from Schlesinger’s taxonomy (illustrated in

Figure 3.2). Additionally, we systematically included two sizes for each grasp type to

accommodate a variety of objects. It is worth mentioning that this taxonomy has also

been widely used in several previous studies [12, 16–19]. For a comprehensive survey of

grasp taxonomies, we refer to MacKenzie and Iberall [29].

2.2 Microgesture design

HCI has a large body of work on gestural input techniques for interacting with the

digital world, including expansive motion gestures based on using full-body [30–33] or arm

movements [34–36]. Compared to these input methods that require significant physical

movements, microgestures (or microinteractions) are performed through subtle movements

that are fast, easy, and do not interrupt other ongoing tasks [37]. As a result, they are

useful in various scenarios, including eyes-free use of mobile devices [1], sports activities [38],

driving [6], and virtual reality [39]. Below we describe the concrete designs of microgestures

using finger movement when hands are free and busy. Also, we will discuss strategies to

avoid false inputs from the gesture design perspective.

2.2.1 Freehand and grasping

Previous work has identified the importance of including end-users in the gesture design

process [40–44]. Morris et al. [42] have shown that users prefer gestures defined by larger

groups over gestures created by a few researchers. The method of eliciting gestures from

end-users, initially proposed by Wobbrock et al. [40], has quickly found widespread use in

various areas, ranging from designing gestures for on-skin input [45] to interacting with

drones [46]. Chan et al. [4] investigated properties of single-hand microgestures through an

elicitation study in a freehand condition. The authors found that the end-users leveraged

fingers’ dexterity for designing a variety of gestures, and also a difference between all five

fingers used for executing the gestures. These observations suggest that gestures and finger

movements would further vary while holding an object.

However, little previous work has empirically investigated input while the user’s hands

are busy grasping an object. These mainly include self-sustained objects, such as steering

wheels and bike handles [6, 47, 48] that allow the user to freely move their hand or fingers

over the object without having the overhead to hold it. Our work is different in that users

had to continuously hold the handheld objects. Lee et al. [49] explored deformation-based

user gestures on various materials such as plastic, paper, and elastic cloth. We followed a
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Figure 2.1: Microgestures designed while holding three objects: a steering wheel, cash card,
and pen as presented by Wolf et al. [5]. (Image courtesy: Katrin Wolf).

.

similar approach using real-world objects. In our work, we leverage the gripping posture

and embrace the challenge of using only one hand.

We drew inspiration from Fitzmaurice’s seminal work published in 1995 with Graspable

User Interfaces [50], which introduced the concept of grasping an object (physically or

virtually) and leveraging its size, shape, and position for input in graphical user interfaces.

Graspables [51] investigated input techniques by implementing physical form devices in

the form of the soap bar and ball. Wolf et al. [5] investigated micro-interactions to support

secondary tasks while the user’s primary task involves holding an object by investigating

three objects: steering wheel, cash card, and stylus as shown in Figure 2.1, wherein

gestures are identified based on consultation with four experts. We extend this work by

investigating a wider variety of 12 objects, conceptually based on Schlesinger’s taxonomy

of grasps (see Chapter 3). Based on a large set of gestures elicited from end-users, we

contribute the first empirical analysis of how grasps and object size affect the properties

of microgestures. In Chapter 5, we advance these conceptual foundations of user-defined

unimanual gestures in freehand and grasping conditions through a sensing approach,

facilitating real-world implementation.

2.2.2 Avoid false activations

Gesture detection errors can be classified in two categories: false positive errors, which

relate to triggering unintended actions, and false negative errors, where a recognition

system fails to identify the intended gesture. In HCI, both these errors result in user

frustration and have direct implications on the adoption of a particular technology [52].

Since false negatives depend more on a particular system, we focus on a more general

premise of avoiding false positives in our work.
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a b

Figure 2.2: Unique gestures designed to reduce false activation on mobile phones. (a) Double-
Flip [7] enabled false activation reduction with flip gesture. (b) Active Edge [8] presented the
idea of intentional squeeze as an intentional gesture. (Image courtesy: (a) Jaime Ruiz, (b) Philip
Quinn)

Some previous work has focused on designing explicit delimiter gestures to avoid false

activations. These gestures are significantly different from non-intentional actions and are

therefore robust to unintended input. One common application for such delimiter gestures

is switching between a gesture detection mode and another mode in which the gesture

recognizer is not active. Through our literature review, we found two main categories

of delimiter action for handheld objects: bimanual gestures, where the non-dominant

hand performs the trigger action and, subsequently, the command is performed with the

dominant hand [12]; and device-specific trigger actions like DoubleFlip [7] that require

a large rotation, or Active Edge [8] that uses squeezing to detect intentional action on

phone devices (see Figure 2.2). WristRotate [53] presented a wrist rotation technique as a

delimiter for smartwatches. Recently, BlyncSync [54] used multi-modal touch and blink

gestures on smartwatches. A drawback of any delimiter action is the disruption in the

user’s workflow: the user must first perform the delimiter, and then the intended gesture.

While one can create compound finger movements with Rhythmic microgestures [55],

the technique demands practice and memorization. More closely related to our approach,

Le et al. [56] explored reachability and unintended input for a specific grasp type with

different phone sizes. From a technical standpoint, adding a large number of negative

trials to a machine-learning algorithm reduces false positive rates [57, 58]. However, these

techniques are applied after the design process of gestures. Secondly, they do not consider

false positive reduction while performing the gestures during hand-object interactions.

Other efforts include engaging end-users in the design process of gestures to reduce the

risk of confusing gestures with natural movement [5, 20]. Our contribution is to employ a

data-driven approach to validate a set of intentional gestures, which are resilient to false

activation on un-instrumented everyday objects and various grasp types.
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Our approach for designing gestures is inspired by Kawahata et al. [59], Magic 2.0 [60],

and Gesture On [9] that compare gestures against a database to identify the ones most

robust to false activations. In Chapter 4, we describe our more general approach with the

design and validation of a gestural concept compatible with a broad range of grasp types,

which leverages the unique single-finger motion with the same hand holding the object.

2.3 Microgesture sensing and recognition

Researchers have investigated different types of sensor data as well as several strategies to

place them, including embedding sensors into the user’s environment [61, 62], developing

full touch-sensitive objects [63, 64], or as smart devices worn by the users [2, 65] to detect

gestures (see Figure 2.3). Since wearing a device is more suitable for our goal of providing

gestural input in diverse scenarios, we concentrated on this strategy.

2.3.1 Sensing type

b c

a

Figure 2.3: Exemplary approaches to sense hand gestures. (a) MTPen [63] developed a multi-
touch pen by integrating a custom capacitive on the entire pen. (b) CyclopsRing [3] uses a
fisheye camera to detect finger gestures in a ring-form factor device. (c) BeamBand [66] an array
of ultrasonic transducers worn on the wrist. (Image courtesy: (a) Hyunyoung Song, (b) Liwei
Chan, (c) Chris Harrison).

Various sensing techniques have been proposed to detect finger gestures. A large

body of research relies on optical sensing for detecting microgestures. CyclopsRing [3]

proposed a finger-worn fisheye camera device to detect on-finger and in-air pinch and
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slide gestures, as well as palm-writing, FingerInput [67] demonstrated detection of thumb-

to-finger gestures using a head-mounted or shoulder-mounted depth sensor. Sugiura et

al. [68] have shown recognition of discrete finger-based gestures using an array of photo

reflective sensors placed on the back of hand. A variety of other sensing approaches

include ultrasonic [66, 69, 70], infrared [2, 62, 69, 71], pressure [72–74], magnetic [75–77],

and capacitive techniques [38, 78]. Due to the advances in deep learning, researchers

have also demonstrated the detection of fine finger movements using radar sensing [61].

These systems show some remarkable success in enabling gesture recognition in freehand

conditions. However, due to the inherent property of such sensing technologies, these

approaches can fail under visual occlusion caused by holding an object. Attaching a

sensor to an object can mitigate occlusion, but the this approach’s scalability can pose a

bottleneck for practical deployment.

a b

Figure 2.4: (a) WristFlex [74] enabled gestures while holding a bike handle using an array of
FSR sensors worn on the wrist. (b) SkinWire [79] proposed a fabrication process of an on-skin
hand gestural interface, including a microprocessor, battery, and wireless communication with
IMU sensing. (Image courtesy: (a) Artem Dementyev, (b) Cindy Hsin-Liu Kao).

Another approach is based on data gloves that are instrumented with sensors [14, 80, 81].

Despite being able to capture high-fidelity information (as shown in Chapter 5), they are

often bulky and hence impede the dexterity of fingers. For a more detailed overview of

the different vision-based and glove-based approaches, we refer to [82].

The most closely related approach to our goal of supporting gesture detection in both

conditions, freehand and while grasping an object, is proposed using an electromyography

band by Saponas et al. [12] and a Force Sensitive Resistor (FSR) band by Dementyev

et al. [74] (see Figure 2.4-a). However, the selected grasp variations and the number

of gestures are limited due to the lower resolution of the technique. Laput et al. used

a smartwatch accelerometer to detect coarse freehand gestures and also demonstrated

activity detection [24, 57]. Furthermore, placing an IMU on finger segments has been

shown to be effective in capturing subtle finger movements and does not get affected if
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there is an object in hand [83–85]. Kao et al. [79] used 4 IMUs for tracking index-finger

and thumb movements in a fully self-contained on-skin form factor (as shown in Figure

2.4-b). Recently, DualRing [86] presented the usage of two IMUs placed on the thumb and

index finger’s proximal segment to detect four grippings postures but did not consider any

gestures while holding objects. Bardot et al. [87] suggested the usefulness of a smart-ring

(embedded with an IMU and a touchpad) for gestures in hands-busy situations. Thus, in

order to simultaneously support gestures with freehand and while holding object conditions,

we selected IMUs as our sensing technique and present a working system in Chapter 5.

2.3.2 Optimal sensor placement

While the aforementioned works presented a viable technological solution to capturing

finger information while holding objects, these do not investigate the optimal sensor

placement to fully harness the capability of IMU sensing. Yet, the placement of sensors

is as crucial for gesture detection as selecting the appropriate sensing type. This is

prominently shown by the findings from Gu et al. [88] and Shi et al. [89] who used a single

IMU and determined that touch-contact recognition performance can be strongly increased

by investigating the optimal position on different finger segments. Lin et al. [90] used an

array of strain gauge sensors to detect finger gestures based on American Sign Language

and reported the minimum accuracy of 70.8% can be increased to 95.8% for an identified

optimal location. Kubo et al. [91] applied piezo-electric elements to detect thumb and

thumb-to-finger gestures, and palm touches and reported the change in accuracy from 90.6

to 96.6% for an optimal location. All these works employed a trial-and-error approach

of moving the sensor at different locations, requiring considerable time and effort. We

leverage a large dimensional dataset captured using a dense setup of 17 IMUs to avoid the

process of repeating manual trials involving the movement of a single sensor at different

locations.

Using the principle of compressed (or sparse) sensing, a large body of work has

demonstrated that a significantly reduced number of sensors can reconstruct real-time

human body pose. Schroder et al. [92] used subspace-constrained inverse kinematics (IK) to

demonstrate only one marker per degree of freedom is sufficient to capture the articulations

of hand, as shown in Figure 2.5. Andrews et al. [93] fused the data from sparse set of six

IMUs and five optical markers to reconstruct the human-body motion using a physics-based

framework and an inverse dynamics solver. Huang et al. [94] reconstructed human pose

using 6 IMUs by synthesizing IMU data from MoCap datasets and modeling temporal

information using a bi-directional recurrent neural networks architecture. More recently,

Eckhoff et al. [95] proposed a sparse and magnetometer-free IMU tracking of double-

hinge joint systems with non-parallel joint axes using kinematic constraints. However,

as mentioned by Brunton et al. [96], reconstruction and classification are two different
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Figure 2.5: Schröder et al. [92] proposed an approach using subspace-constrained IK to
reconstruct hand articulations with sparse optical markers. (Image courtesy: Mario Botsch).

problems.

While some work exists that uses sparse representation for gesture classification, they

mainly rely on visual data and in free hand scenarios. Poularakis et al. [97] used the video

sequences from the 10 Palm Graffiti Digits dataset and proposed a sparse representation-

based classifier approach. Mantecón et al. [98] used the depth imagery data from Kinect

2 sensor and introduced a dimensionality reduction technique on the large depth-based

feature descriptor. To the best of our knowledge, our presented method in Chapter

5 is the first that presents a computational method for identifying a sparse layout for

gesture classification using IMUs. Our method is not only capable of considering gestures

performed in freehand and grasping conditions but also rapid enough to select customized

layouts supporting user-defined requirements of gestures, objects, and location constraints

for sensor placement.

2.4 Computational design approaches

The idea of reducing the effort involved in implementing gesture recognition systems has

received considerable attention in HCI. Wobbrock et al. [99] proposed the $1 recognizer

for rapid prototyping of gesture-based interfaces. Long’s Quill [100], a pen gesture system,

enables users to create pen gestures by example. EventHurdle [101], M.Gesture [102]

and Mogeste [103] enable users to compose custom gestures on mobile devices. Gesture

Coder [104] helps developers incorporate multi-touch gestures into their applications

using the developer’s demonstration on the tablet’s touchscreen. Note that gestures on

mobile devices have received particular attention in this trend. Our work goes beyond the
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restriction of holding smartphones or tablets and focuses on enabling gesture detection

when the users’ hands are busy during everyday activities, like cooking in the kitchen or

carrying items on the street.

While there are existing machine learning-based frameworks and platforms for quickly

prototyping and debugging various classifiers and implementing custom machine learning

pipelines [105–107], they are targeted for programmers and do not consider aspects of

interaction design. On the other hand, recent advances in technology have enabled

novice users to train and classify custom ML models without the need for programming

expertise [108]. However, these majorly address image or audio classification problems

(see Figure 2.6). Our main goal in this thesis is to use machine learning as a design

material [109] and enable designers to rapidly create efficient gesture recognition without

needing expertise in ML and programming. Motivated by the challenges of designing

a sparse sensor layout, we strive to provide designers with a computational tool that

abstracts from the complexity of multiple factors (choice of gesture, object, and location

constraint), which are conventionally tuned by manual efforts and require technical skills.

In Chapter 5, we present a GUI-based tool to help designers and engineers select the

optimal sparse sensor layout to facilitate always-available input in hands-free and busy

scenarios.

Figure 2.6: Google’s Teachable Machine [108] provides machine learning classification using
images from a webcam (screenshot attached with permission from Michelle Carney).
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CHAPTER 3

User-defined microgestures while

grasping everyday objects

Gestural user interfaces typically require users to have at least one hand free, e.g., moving

a mouse, touching a screen, or performing mid-air gestures. Consequently, it is difficult

for users to operate computing devices whilst holding or manipulating everyday objects, a

challenge that needs to be solved for realizing “always-available input”. Most closely related,

Wolf et al. [5] presented pioneering first work with an intuitive set of microgestures: subtle

and rapid finger movements compatible with holding objects designed by investigating

three objects. However, we still lack a systematic understanding of how microgestures

relate to the different grasps and objects we encounter in our day-to-day lives.

This thesis addresses the above challenge (RQ I: How does the multitude of grasp

types and object geometries affect users’ choice of microgestures?) by introducing Grasping

Microgestures1. We conducted the first elicitation study of microgestures with handheld

objects to systematically investigate the effects of grasp and object sizes on the gestures

conceived by end-users. We took a holistic approach and probed gestures on objects

encompassing all six grasp types from a well-established grasp taxonomy [15]. Additionally,

we used two size variations for each grasp type for a more detailed analysis. Besides

analyzing their choice of gestures, we also examined information related to the constraints

imposed by holding objects, such as the finger used and the location of performing the

gestures. Overall, we performed an empirical analysis of microgestures performed while

the user held an object in hand and analyzed over 2,400 user-generated microgestures.

Our findings characterize the users’ preferred gesture type when hands are busy holding

an object. We found that these gestures are largely determined by the referent (command

invoked by the gesture), rather than the grasp or object. Interestingly, the choice of

1This chapter’s contents are based on a publication at CHI ’19, which I led as the first author [20].
I created the study design, conducted experiments, and analyzed data (including the idea of using
clustering).
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Figure 3.1: Grasping Microgestures enable direct and subtle interactions with computer systems
while holding an everyday object. This chapter presents empirical results from an elicitation
study with varied objects, investigating the effect of grasp and object size on user’s choice of
microgestures, preferred locations, and fingers used.

fingers and gesture location is strongly influenced by the handheld object’s grasp and

size. We extend the original elicitation method by proposing statistical clustering of

users’ elicited gestures. This approach facilitates finding previously undiscovered patterns

through a data-driven interpretation. Furthermore, it identified similarities among different

geometries and ultimately allowed us to present three main cluster sets of gestures that

cover interactions for all 12 varied objects. We ultimately derive design implications that

guide designers of microinteractions in choosing microgestures compatible for use with

handheld objects.

This chapter first describes the method of our study design in Section 3.1. Section 3.2

presents the results, including agreement score, distribution of fingers’ usage, qualitative

analysis, and the clustering approach. Section 3.3 presents a consensus gesture set, followed

by the implications for design in Section 3.4. Finally, in Section 3.5 and 3.6, we provide

limitations and conclusions based on this chapter, respectively.

3.1 Method

To investigate how users perform microgestures while they are holding objects using various

grasps, we conducted an elicitation study.

3.1.1 Participants

20 healthy participants (10m, 10f, mean 26.2y; median 25y; 2 left handed) were recruited

from different professional backgrounds (arts, engineering, law, psychology) and various

cultural backgrounds (Western Europe, Middle East, India, China, USA). Participant

compensation was 20 euros.
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3.1.2 Apparatus

Following the method proposed by Wobbrock et al. [40], we intentionally refrained from

using any sensing technology so as not to bias the user’s response by restrictions imposed

by equipping everyday objects with sensors. Participants used passive handheld objects.

No additional feedback was provided. The entire session was video recorded.

3.1.3 Referents

Our list of referents is informed by [4, 40]. In total, we selected 10 referents that comprise

discrete (select, delete), binary (accept/reject, next/previous) and continuous (increase,

decrease, move, rotate) commands. We kept the set of referents compact, first because

microinteractions are commonly used for a small set of simple and quick commands that

do not disrupt a primary activity, and second to keep the study feasible despite the number

of conditions, which was considerably larger than in typical elicitation studies from prior

work.

3.1.4 Grasps

We based our grasp conditions on Schlesinger’s seminal classification of six prehensile

postures that account for variations in object shape, hand surfaces and hand shape [15, 29].

This classic taxonomy is frequently used in prior work [12, 16–19, 28]. The grasp conditions

are:

• Cylindrical : for holding cylindrical objects, such as a coffee mug.

• Palmar : for grasping with palm facing the object, such as grasping a book.

• Hook : for grasping a heavy load such as a bag.

• Lateral : for grasping flat objects such as paper.

• Tip: for grasping small objects such as a pen.

• Spherical : for holding spherical objects such as a ball.

3.1.5 Object Size

We hypothesized that within each grasp type, the size and weight of the object would

affect the grasp and hence the set of microgestures that can be performed. We performed

a pilot study with two interaction designers who were asked to perform any microgestures

they could think of on objects of largely differing weight (ranging from a feather-weight

styrofoam ball to a 10 kg dumbbell) and largely differing size (ranging from tiny needle to
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a 75 cm yoga ball). The results of this pilot study indicated that size has a strong effect

on microgestures. To give only one example, while holding a cylindrical object of small

diameter, the user can perform actions such as snapping around the object or touching

his fingertips. These are not possible with larger diameters. We found that weight has

a much less strong influence on the microgestures that can be performed, as long as the

weight allows a user to comfortably hold the object using a single hand. For example, one

can tap the same way on a very heavy ball and on a lighter ball.

We therefore decided to investigate variations of object size only and selected a small

and a large object for each grasp.

3.1.6 Representative Handheld Objects

We chose a total of 12 handheld objects that represented our 6 grasp conditions as well as

a significant variation in size within each grasp. The set of objects is shown in Fig. 3.2. To

identify representative objects that cover varied environments, two interaction designers

have iteratively compiled a list of objects, selecting objects from the literature [5, 110]

and adding further ones from everyday usage. We opted for real-world objects instead

of abstract geometrical props to make it easier for participants to conceive gestures they

would make in a realistic setting. Our final set of objects contains: knife and hammer

for cylindrical graps; small cardboard box and large cardboard box for palmar grasp; bags

with small and large handle for hook grasp; credit card and A4-size paper sheet for lateral

grasp; sewing needle and marker for tip grasp; pestle and scrubber for spherical grasp.

scrubber

pestle

marker

needle

A4 paper

credit card

Bank

suitcase

hand bag

large box

small box

hammer

knife

SphericalTipLateralHookPalmarCylindrical

Grasp Types

Si
ze

Figure 3.2: Selected grasps and corresponding objects for small and large object sizes.
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3.1.7 Task and Procedure

We used a within-subject design. The order of referents, grasps and object sizes was

randomized. Participants elicited gestures while standing. First, we chose one of the 12

objects (in random order). The participant was given the object that represents the grasp

and object size condition of this trial and was asked to naturally hold it steadily in the

dominant hand. For each object, we then presented all 10 referents one after another,

in a random order. For each referent, the participant had to make a microgesture using

the same hand that was holding the object. To reduce legacy bias, we applied priming

[111] by informing participants about the potential of such ‘Grasping Microgestures’. In

addition, we ensured today’s computing technology was neither used nor visible during

the study: names of objects and referents were presented on paper slips, and we asked

participants to place their personal devices out of sight.

In a few cases, the participants chose a different grasp than the one to be tested in

the trial. Then the experimenter asked the participant to present a second gesture using

the correct grasp. We also asked for a second alternative if the proposed gesture involved

rotation or movement of the object. This was taking into account that in some real-world

environments it would not be possible to move or rotate the object (e.g., a glass full of

water or a power tool).

For each participant, the experiment took approx. 3 hours and was conducted in two

sessions of 1.5 hours each.

3.1.8 Analysis

Overall, we elicited 10 (referents) x 6 (grasps) x 2 (object sizes) x 20 (participants) =

2,400 microgestures. An additional 131 microgestures were performed in case of change

in grasps, object movement or rotation, as described above. This gave a total of 2,531

gestures. We used descriptive labeling, chunking, and phrasing [112] for our data analysis.

We analysed more than 50 hours of video recording and manually annotated each proposed

gesture with its properties: which type of action was performed (e.g., tapping, sliding,

pressing), direction (if applicable), count (e.g., 2 for double-tap), finger(s) used (including

phalanges of the fingers and the thenar and hypothenar eminences), location type (on

object, on body, or in air), location on object faces (similar to [6]). The labels for action

type and location type were iteratively refined using an open coding approach.

3.2 Results

In this section, we present results of the elicitation study. We analyze agreement between

participants and analyze the properties of the proposed microgestures, including action
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types, location of interaction and finger usage. The results show that microgestures

strongly depend on the type of grasp and the size of the handheld object, as these offer

different affordances and constraints. We are able to show that all 12 object conditions

can be clustered into four types, for each of which we present a consolidated consensus

gesture set.

3.2.1 Agreement Rate

To identify the level of consensus between participants’ proposals, we calculated agreement

rate between participants using the AGreement Analysis Toolkit (AGATe) and the modified

agreement rate introduced by Vatavu et al. [113]:

AR(r) =
|P |

|P | − 1

∑
Pi⊆P

(
|Pi|
|P |

)2

− 1

|P | − 1
(3.1)

We considered participants to be in agreement if they proposed a gesture of the same

action type and the same properties, for instance same direction of swiping or same number

of taps. This resulted in 18 unique gestures. Agreement rates were calculated individually

for each grasp and object size.

The results are shown in Figure 3.3. Agreement rates ranged from 0.049 (low agreement,

AR ≤ 0.1) to 1.000 (very high agreement, AR > 0.5). The mean AR across all objects

and referents was 0.281 (SD = 0.19), which can be qualified as medium agreement (0.1

< AR < 0.3). This range of agreement is comparable with those reported in prior work

involving hands as a primary input [4, 45, 49].

3.2.1.1 Agreement rate among different referents

We observed considerable variation in agreement rates for different referents, as commonly

reported in prior work. Participants appeared to agree more for commonly used operations

like Select. This can be explained not only by a stronger legacy bias, but also by the

relative ease of finding a simple mapping for referents such as tapping for select. We also

observed higher consensus for commands related to physical actions (Move, Rotate), for

which most participants proposed gestures that involve directional movement. In contrast,

we observed lower agreement rates for critical commands such as Delete and Reject. Many

participants intended to avoid false activation of such critical operations and hence tried

to make unique suggestions.

3.2.1.2 Agreement rate among different grasp types

Our results reveal that agreement rates vary among different grasp types. Palmar and

Cylindrical grasps show higher agreement than the remaining grasps. This finding might
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REFERENT

OBJECTS

cylindrical palmar hook lateral tip spherical

small large small large small large small large small large small large MEAN STDEV
select 0.300 0.321 0.300 0.342 0.276 0.242 0.314 0.321 0.321 0.405 0.219 0.347 0.31 0.05 
accept 0.195 0.143 0.224 0.142 0.174 0.205 0.152 0.147 0.174 0.113 0.105 0.194 0.16 0.04 
reject 0.137 0.138 0.065 0.065 0.147 0.148 0.147 0.258 0.347 0.119 0.087 0.152 0.15 0.08 
delete 0.072 0.110 0.090 0.065 0.071 0.049 0.087 0.083 0.073 0.083 0.082 0.057 0.08 0.02 
next 0.179 0.105 0.168 0.132 0.084 0.189 0.147 0.086 0.142 0.105 0.110 0.081 0.13 0.04 

previous 0.174 0.137 0.158 0.174 0.100 0.200 0.116 0.069 0.162 0.074 0.132 0.071 0.13 0.04 
increase 0.586 0.637 0.432 0.568 0.186 0.290 0.257 0.242 0.248 0.437 0.479 0.374 0.39 0.15 
decrease 0.732 0.563 0.390 0.584 0.179 0.333 0.363 0.247 0.300 0.426 0.437 0.374 0.41 0.15 

move 0.323 0.602 0.589 0.814 0.652 0.478 0.320 0.648 0.317 0.524 0.468 0.344 0.51 0.16 
rotate 0.514 0.652 0.814 1.000 0.510 0.729 0.484 0.447 0.308 0.431 0.241 0.308 0.54 0.23 

MEAN 0.32 0.34 0.32 0.39 0.24 0.29 0.24 0.25 0.24 0.27 0.24 0.23
STDEV 0.22 0.24 0.24 0.33 0.19 0.19 0.13 0.18 0.09 0.19 0.16 0.13

Figure 3.3: Agreement rates for all referents, shown individually for grasps and object sizes.
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be related to the constraints imposed by these grasps, which restricted finger movement

more considerably than in other grasps. Object size had a less considerable influence on

agreement rates.

3.2.2 Action Types

To understand what actions the proposed microgestures contain and how the choice of

action depends on the referent and on the handheld object, we identified action types and

their distribution for referents and objects.

The results are depicted in Figure 3.4(top). They show that the type of action chosen

strongly depends on the referent. We identified the following action types:

1. Tap (26.1% of all proposed gestures): Participants chose tapping actions most

frequently for 3 of the 10 referents (Select, Accept, Delete). For Select, 79.3% of all

proposals involved tapping. During the think-aloud session, users mentioned its ease

and resemblance to input on touch devices. Participants also leveraged the spatial

precision of choosing one specific location of tapping in a some proposals for Accept,

Reject, and Delete, as well as for Next and Previous.

2. Press (8.2%): Press was among the least performed actions. Some participants

intentionally used pressing, as opposed to tapping, as a means to confirm for Select,

Accept, and Delete.

3. Stretch (9.2%): Some proposals included in-air finger movement, such as pointing

with a finger, or stretching out one or multiple fingers. For Reject and for Delete 16

participants proposed stretching out two or three fingers (middle, ring and pinky),

as if to flick something away.

4. Swipe (37.7%): Continuous actions such as Increase-Decrease and Next-Previous

leveraged the fluid, directional as well as continuous nature of swipes. Although

all referents were shown in random order, and hence dichotomous pairs of referents

were not necessarily presented one after another, participants intentionally made use

of opposite direction movements for such dichotomous pairs (“outward as increase,

towards myself is decrease” [P10]). Participants also acknowledged that object

geometry plays an important role in helping map directions.

5. Draw (16.4%): We classified all non-linear swipes as Draw. Participants used this

action in more than 80% of the proposed gestures for Move and Rotate, leveraging

intuitive spatial mappings. For instance, a circular sliding motion was used for rotate,

while directional movements similar to input on a trackpad were used for Move. 6%

of the proposed gestures for Delete were a ’cross’ symbol.
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Figure 3.4: Action distribution for Referents (top) and Objects (bottom).
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In addition to these types of action, a very small number of proposals involved changing

the grasp (0.9%), moving the object (0.5%), or rotating the object (0.8%). As these were

very rarely proposed and would not be compatible with all objects, we do not recommend

using those.

Contrary to distribution across referents, grasp and object size did not considerably

affect the choice of action type, as shown in Figure 3.4 (bottom). A few minor exceptions

are notable, however. Spherical grasp with large object (Scrubber) showed the highest

percentage of draw actions, which represented almost one in three proposed gestures of

this condition. We observed that the thumb movement is restricted, however, the index

finger can move easily over the large surface and draw gestures, similar to the posture of

holding a computer mouse. In-air gestures were performed mainly with grasps on objects

where some of the users’ fingers were not involved in holding the object and hence free to

be moved in mid-air. This is visible in case of lateral grasp (13.1% and 16.1%) and tip

grasp with the small sewing needle (17.8%).

These findings confirm empirical findings of prior work that investigated designers’

rather than users’ mental model. They also extend to a larger set of grasps and objects

and for the first time quantify distributions.

Overall, we can conclude that the choice of action type is mainly guided by the referent,

rather than the grasp or object.

A second central implication of our findings is that the vast majority of proposed

gestures uses tapping, swiping or drawing, which are all established multi-touch interactions

common on handheld devices. Taken together, these findings suggest there might be a

possibility of defining consistent microgestures for handheld objects that use similar actions

for all objects while being compatible with a user’s established mental model of multi-touch

interaction.

3.2.3 Action Location: On-Object, On-Body, In-Air

While action type appears mostly unaffected by grasps and objects, our results show that

the handheld object strongly influences the location where this action is performed. As we

did not put any restrictions on where participants did microgestures with their dominant

hand, participants were free to perform those not only on the handheld object itself, but

also on their own hand or fingers, or in mid-air.

As shown in Figure 3.5, the location used for interaction depends on the size of the

object. This plot arranges objects based on the proportion of microgestures that were

done on the object, rather than on the body or in air. (Note that in all these cases the

participant kept holding the object.) It becomes apparent that with increasing size of

the object, a higher proportion of gestures are on the object. On the box objects, around

90% of all gestures have been performed on the object itself. Some users commented that
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Figure 3.5: Action location for each object.

making gestures on the large box is similar to using a touchpad. On the contrary, as small

objects do not offer large surface real-estate for performing gestures, a considerably higher

fraction of gestures was performed on the user’s own hand or fingers, or in mid-air in case

of small objects. The most extreme case, the needle, offers virtually no space for gestures,

hence almost 90% of all gestures have been made on the body or in mid-air.

44.0% of the gestures performed using the needle were mid-air gestures due to the lack

of surface area on the object. Very few people used their index finger as a pointer. In case

of the needle, and also for paper, a common strategy consisted of making touch gestures

with a finger on the palm of the same hand, like on a touchpad. Some participants were

amused once they found out that they can actually touch their palm with the same hand’s

finger. Once they discovered this affordance, they started leveraging the considerable

space for gesturing provided by the thenar region while holding small objects. 12.1% of all

proposed gestures for paper and 11.0% for needle used this strategy.

In contrast to self-sustained objects, such as the steering wheel [6], the hand could not

be easily moved on our handheld objects to reach distant locations without risking the

object falling down. Hence, the majority of microgestures appear close to the position

where the object is held. Furthermore, none of our participants used prominent visual

landmarks on the object (like a printed logo) for interaction.

3.2.4 Use of Fingers

While prior work on free-hand microgestures has identified frequency rates of finger use [4],

we are not aware of any such information reported about microgestures with handheld

objects. Taking into account that grasping an object constrains finger movement, it is to be
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Figure 3.6: Fingers used as an actor for grasping microgestures.

expected that different grasps considerably affect which fingers are used for microgestures.

Here, we contribute the first frequency usage for each finger based on different grasps and

object size.

The results are depicted in Figure 3.6. They empirically confirm that the grasp

considerably affects the choice of fingers for microgestures. We identified two main clusters,

based on grasps: For Hook grasp, Palmar grasp, Cylindrical grasp and Spherical grasp,

the vast majority of gestures were performed using the thumb or index finger. These grasp

types have in common the use of most or all fingers for holding the object. This allows

the user to temporarily move the thumb or index finger, while using the remaining fingers

to stabilize the hold.

By contrast, for Lateral grasp and for Tip grasp with a small object (sewing needle),

the vast majority of gestures were performed using middle, ring or pinky finger, or a

combination of those. These grasps have in common holding the object with both thumb

and index finger. As their movement was constrained, participants resorted to using the

remaining fingers for microgestures. In those cases, the middle finger was most frequently

used. For instance, a user might be comfortable using the middle finger to perform a

swipe on a digital pen to increase the stroke width. In contrast, using the thumb would

create an imbalance in the grip and might lead to dropping the object. However, there

were some instances where participants avoided using the middle finger due to social

inappropriateness of gesturing with the middle finger, although the gesture would have

been easier to perform than with the ring or pinky finger (“[it is] socially unacceptable if I

use the middle finger, which is easy to do” [P4]).

Tip grasp with a larger object (marker) was situated between both clusters, with a

fairly even distribution between thumb/index and middle/ring/pinky.

Analyzing the first group in more detail, our data reveal that microgestures in Hook

grasp and Cylindrical grasp most frequently use the thumb and rarely use the index finger.

Also, Palmar grasp shows a slight preference for the thumb. We believe this is particularly

likely because in such cases the object rests against the other fingers and hence the thumb

can be easily released from the object for interaction. In contrast, Spherical grasp and Tip

grasp (large object) make more equal use of the thumb or index finger.
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Similar to the findings by [6], our data show that the choice of finger used to perform

the gesture is almost unrelated to the associated command. Contrary to [4], participants

did not complain about not remembering the exact finger. Our assumption is that this is

because of the additional constraints present in settings with handheld objects: since the

grasp posture restricts the choice of fingers to be moved, it helps users to remember the

fingers used for the interaction.

3.2.5 Qualitative Analysis

We used an open-coding approach, with iteratively refined codes, to describe the gestures’

properties, such as the type of action, gesture location, and finger details. In addition,

we annotated gesture properties with unique observations we made during the study and

post-session interviews. Altogether, the analysis revealed several interesting insights about

how participants performed gestures. For instance, when performing the gesture on a

small object, participants showed a variety of techniques to overcome the limited amount

of space on the object. This included slightly adjusting the grasp or retracting fingers

that were not involved in a gesture to create additional space on the object for making

touch gestures. Participants clarified that techniques like unconsciously bending fingers

for creating an interaction surface were inconsequential to the core gesture. Similarly,

participants completed linear swipes through diagonal movements when a specific horizontal

or vertical movement was not possible on the object geometry (e.g., swiping at the backside

of the paper using the middle finger (“I don't have vertical movement...doing it diagonally”

[P4]).

In almost all cases, users performed touch gestures with the center of the fingertip.

In some cases, however, like sliding along the pestle, the ulnar (inner) side of the finger

was used due to the ease of contact. There were also very few instances where the hand’s

metacarpus (palm) region was used as an input mainly for Press actions while holding the

object. Moreover, participants preferred using the nail instead of fingertips for interactions

involving ”knocking” on an object. These variations with different finger parts can expand

the design space of performing gestures on an object. Several participants commented that

they would be willing to repeat the same gesture to allow the system to distinguish the

gesture from normal object manipulation and to ensure it is recognized as intended input.

While feedback is outside the scope of this study, one participant explicitly stated that he

would appreciate getting vibrational feedback as a confirmation the gesture was accepted.

3.2.6 Clustering of Grasps

A major challenge in designing microgestures for use with handheld objects is the large

number of grasp types, which is further complicated by additional influencing factors
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Figure 3.7: 3 Clusters derived from the commonalities of the interaction amongst all 12
representative objects.

such as object size. As it would not be desirable to design individual gesture sets for

each condition, we sought to further extend the information provided by the agreement

score analysis. In addition to finding consensus gestures for a given referent, we aimed at

analytically identifying commonalities among the users’ microgesture proposals in different

conditions.

While statistical clustering is a commonly used technique in the fields of machine

learning and pattern recognition, to the best of our knowledge we are the first to leverage

this data-driven approach in an elicitation study to reveal patterns. We used all gesture

properties we had annotated in our dataset, including action location, finger use, etc. To

avoid a bias, we removed information about the experimental condition (grasp type, object

size). We first applied Principal Component Analysis (PCA) for dimensionality reduction

of our annotated data. Furthermore, we used the simple yet robust K-nearest neighbor

approach for clustering. We employed the elbow method to find the optimal number of

clusters (k=5). After analysing the K-nearest output and visualizing the level of separation

between clusters, we observed that the frequency distribution of gestures from the same

condition across the five clusters showed a significant peak on exactly one cluster for all

conditions. Hence, we applied the majority rule to map each condition (grasp x object

size) to exactly one cluster. It is worth noting that one of the 5 clusters did not contain

any majority vote, and hence became an empty set in our final grouping. The resulting

clusters, which we call Grab-a, Grab-b, Pinch, and Claw are shown in Figure 3.7.
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Cluster Grab-a comprises grasp types where the user’s fingers are reaching around the

handheld object, allowing thumb or index finger to be moved, while the object is offering

considerable surface real estate for interactions. Cluster Grab-b (shown with dotted lines)

can be qualitatively explained by the combination of a handle with small diameter and the

Hook grasp. This resulted in a unique affordance allowing the thumb to reach around the

handle and perform gestures on the user’s hand, specifically at the distal phalanx (front)

side of the index finger.

Cluster Pinch comprises grasp types that predominantly make use of the thumb

and index finger for holding the object. Cluster Claw comprises grasp types that have

predominant use of index finger rather than thumb.

Comparing this empirical clustering with the intuitive, conceptual grouping of grasps

done by Saponas et al. [12], it is interesting to note that both approaches resulted in

three groups of grasps. Our empirical findings confirm the intuitive grouping of Palmar

and Cylindrical grasps. Likewise, our findings confirm that Hook grasp forms its own

group, however only for small objects. Most important, our findings show that contrary

to the grouping proposed earlier, Spherical grasps systematically differ from Palmar and

Cylindrical grasps in the use of index finger vs. thumb, and hence should not be grouped

together.

3.3 Consensus Gesture Set

We used these three clusters to design consensus gesture sets for microgestures with

handheld objects. These are the first end-user driven gesture sets that cover a large range

of grasp types and objects.

For each referent, we assigned the most frequently performed gesture, similar to [40].

The gestures for Reject and Delete are grouped together because of a high consensus for

this particular action by our participants.

Figure 3.8 shows the final consensus gesture sets. Drawing from the quantitative data

and our observations, we suggest that conventional mapping of Tapping and Swiping offers

the most convenient mapping for Select, Increase/Decrease, and Next/Previous actions.

The press modality has been most frequently proposed for confirmation. Stretching of

fingers, used for Reject and Delete commands, require higher user consciousness, reducing

the likelihood of any false input. The circular or directional Draw action defined for Move

and Rotate provide natural spatial mappings.

Even though we present three consensus gesture sets–one for each main cluster identified

in the previous section–it is to be noted that these gesture sets share many features. For

each referent, the action type and main action properties are similar in all gesture sets.

The first and second gesture sets only differ in use of thumb vs. index finger. The
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Figure 3.8: Consensus gesture set for all 3 main clusters.

difference between the second and third gesture set is that gestures appear on-body or

in-air vs. on-object.

Despite the large variations in grasps and object sizes these user-defined gestures

support, we believe these microgestures will be easy to memorize and easy to perform.

This is because they build on established mental models of touch interaction, systematically

leverage affordances and constraints offered by grasps, and use similar gestures for all

grasp types.

3.4 Implications for Design

Based on the results presented in the previous section and qualitative feedback of partici-

pants while thinking aloud and during interviews at the end of each session, we derive

several implications for design of systems for gestural input.

3.4.1 Microgestures on Everyday Handheld Objects

A central question that motivated our study was to find out how the multitude of grasps and

object geometries affect users’ choice of microgestures they perform while holding objects.

Would designers of applications for mobile computing and the Internet-of-Things have to

design a custom set of specific gestures for each type of object? Are there commonalities

that allow us to use the same gestures on many objects? The former would be very

undesirable from a usability standpoint and would risk frustrating users up to the point of

rejecting the new opportunities unleashed by microgestures. The latter would be highly
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desirable but seemed unrealistic to us before conducting the study.

One of the primary and surprising findings of our study is that three gesture sets are

sufficient to cover all 6 main types of grasp and 12 objects in our study. In addition,

the gestures are similar for all three sets, as they use the same action types and gesture

properties and mainly differ only in what finger is used for making the gesture and whether

the gesture is performed on the object, on body or in air. Given these choices are mainly

guided by the affordances offered by the object (small or large surface for performing

gestures) and constraints of the grasp posture (which fingers can be moved easily while

holding the object), we believe users can easily perform the gesture that is compatible

with the given object. Ease-of-learning and memorization is further supported by our

finding that most gestures build on established touch gestures commonly known from

touchscreens. While this might have been strongly influenced by legacy bias, we believe

it is a strength of the gesture set, as it is compatible with established mental models of

interaction. Our findings further show that miniature objects as small and thin as a needle

can be used as an input medium. Participants performed similar microgestures as on other

objects, but with more on-body and in-air interaction. Fairly large objects, such as a large

cardboard box or a suitcase, can be used for single-handed microgestures, too.

3.4.2 Avoiding False Positives

False positive input is a challenge while interacting with handheld objects, as hand or

finger movements that relate to the primary activity might be incorrectly recognized

as an input microgesture. While our study design did not focus on this question, our

results indicate a number of strategies that participants have used to avoid false positives.

Many participants were particularly inventive for gestures that trigger a critical action

like Deletion. The most varied actions have been proposed for these referents to ensure

they are different from movements that relate to the primary activity (“Normally wouldn’t

touch down” [P9]). For instance, one strategy was to intentionally change the grasp while

using the marker, and touching the lowest tip part (area with ink). Another strategy

was to stretch only the pinky finger while keeping the middle and ring finger in a flexed

position. In contrast, during natural movement, stretching the pinky would normally

result in at least some stretching of the ring finger as well. Participants went as far as

using double or even triple taps, or intentionally touching the sharp area of the knife, to

ensure communication of the input gesture is intended. As an alternative to implementing

a specific activation gesture or mapping critical functionality to gestures that are hard to

perform, we recommend that designers implement an undo functionality that allows the

user to undo any previous action that might have been triggered by a false positive. The

Reject gesture from our gesture set could be used for this function.
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3.4.3 Sensor Placement

The finger and location information provided in this study can be used to inform sensor

placement for gesture recognition systems on the handheld object, on the user’s hand and

fingers, or even both.

Our results show that by only sensing input from the thumb and the input finger, a

large majority of all gestures can be sensed for all grasps other than Lateral and Tip with

small object. Gestures in Cylindrical and Hook Grasps can even be reasonably captured

with the thumb alone. For the Lateral and Tip (small) grasps, sensing input from the

middle finger would offer a minimum instrumentation. While previous studies identified

the pinky as the least frequently used finger, we uncovered its unexplored dexterity while

holding small objects like needle and credit card.

Participants mentioned the thenar region as a large fleshy area of the palm (“Tap with

middle finger on the fleshy part of the palm” [P11]), similar to the ’touchpad’ of laptop

and used it extensively as an input surface for touch gestures while holding the needle.

Designers of sensing systems should consider capturing input on this area. Only 1 out of

20 participants suggested the use of Shear action, and also Press was rarely proposed. We

therefore conclude that in most cases it seems sufficient to capture touch contact alone.

Our location information can also be used to avoid false positives on the object, placing

the sensor at a location farther from the place where the object is grasped. Being harder

to reach, it is less likely the user would interact on it unintentionally.

3.5 Limitations

In our study, we investigated gestures performed within a short pause during the primary

activity. As stated by Ashbrook [37], such microinteractions should take less than 4 seconds

to initiate and complete to smoothly integrate with the primary activity. For this work,

we opted against gestures that would be performed simultaneously, without stopping the

primary activity. The effect of many possible physical primary activities are beyond the

scope of this study and should be investigated separately in future work.

To help participants invent realistic gestures, we opted for actual objects instead of

abstract geometric props. The choice of objects was centered around providing familiarity

with the object. Some participants even commented that they have never thought that

such objects they commonly use can be used for interaction. Using realistic objects for the

respective grasps implied that there is some natural variation in size and weight of objects.

We acknowledge this could be a limitation from a formal experiment perspective, yet we

believe it is outweighed by the benefits of being able to cover diverse realistic objects in

this exploratory study. The effects of object size and object should be investigated in more
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detail in future work.

For the sake of comparability among objects, we have used rigid objects. Future work

should study how affordances of soft materials might change user behavior. For instance,

users might perform more squeezing or pressing actions with soft objects.

To create a more relaxed and creative atmosphere, the participants in our study were

not blindfolded, which we deemed important for inventive gesture proposals. While most

of the proposed gestures can certainly be performed during eyes-free interaction, we clarify

that this is not necessarily guaranteed, as participants were able to look at the site of

interaction.

3.6 Conclusion

In this chapter, we presented results from the first elicitation study of microgestures

with handheld objects to systematically compare the effect of grasps and object sizes on

microgestures conceived by end-users. Our findings revealed a strong influence of grasp

and object size on usable microgestures. Furthermore, results from data-driven clustering

show that the effect of grasp and object size on microgestures can be reduced to only three

clusters. Together with the consolidated gesture set, we have presented findings useful for

designing gestural input and recognition systems for situations where a user’s hands are

busy holding an object. These findings are the first step toward unified microgestures that

work across all common handheld objects; we hope they will be useful to both designers

and engineers of gestural input systems. With finger movements during daily activities or

complex hand-object manipulations, they could get mixed with gestures designed by the

end-users. Therefore, in the next Chapter 4, we address the critical question of identifying

strategies for avoiding false-positive input during everyday activities.
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CHAPTER 4

Robust microgestures for avoiding

false activations

The previous chapter identified Grasping Microgestures as a promising means for enabling

interaction while holding everyday objects. Such gestures might be used to replace the wake

word in voice assistants (e.g., ”Alexa” or ”Hey Google”) [114], but can also offer benefits

in a myriad of applications, ranging from controlling mobile devices when on the move and

hands are busy, to controlling systems in healthcare contexts [115]. Although performing

quick and convenient gestures on handheld objects is desirable, they might conflict with

finger movements that might occur when adjusting one’s grip or manipulating the object.

As a consequence, gesture recognizers may misinterpret natural finger movements as

intended input gestures and trigger unintended commands, such as false activation. Many

recent approaches to reduce false activations involve delimiter gestures and are designed

for a specific device [7, 8, 53, 54]. Such approaches tend to disrupt the user’s workflow

and lack scalability to the multitude of objects in their daily lives.

In this chapter, we present SoloFinger 1, a concept to address the problem of false

activation when holding or manipulating everyday objects (RQ 2: How to avoid false

activations in gestural input while handling everyday objects?). It is based on the

observation that fingers tend to be static or move simultaneously when holding and

manipulating objects. Thus, an extended yet comfortable movement of a single finger is

rare (see Figure 4.1a and 4.1b). This allows the design of simple and robust microgestures

that are applicable to diverse grasp types, object geometries, and everyday tasks. To

methodologically validate this in the context of hand actions and gesture design, we

conducted extensive user studies and performed a series of data-driven analyses. As a

1This chapter’s contents are based on a publication at CHI ’21, which I led as the first author [21].
I conceived the initial concept of SoloFinger and refined it with my co-authors, designed the dataset
collection studies, built the OptiTrack setup, and led the data analysis. Additionally, I started and led
the collaboration with researchers from the University of Copenhagen.
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Figure 4.1: (a) The SoloFinger concept: while grasping an object, one can perform a single-
finger microgesture while other fingers stay idle. (b) These easy and rapid-to-perform gestures
exhibit a distinct movement signature, which is not present during daily actions. This yields a
robust gestural input compatible with versatile object geometries and actions.

result, we recommend 7 types of SoloFinger gestures performed with the thumb, index,

or middle finger, offering overall 21 interaction options. We collected 7,488 gesture trials.

We systematically analyze these gestures as well as a pre-existing dataset comprising

933 trials with daily hand-object actions. To produce findings that generalize beyond a

specific classifier implementation and can be interpreted by humans, we opted for a simple

white-box classifier, based on thresholding. The results show that SoloFinger microgestures

performed on 36 objects can be recognized with an average precision of 100% and recall of

88% (SD = 7) over three primitive gestures. We also show the technique’s resilience to

false activation on the held-out dataset, which triggers false activation in only 51 out of

933 trials of actions performed with 36 objects. Notably, no false activation was found for

23 actions, while most cases of false activation occurred on extremely deformable or very

small objects.

Finally, we demonstrate a proof-of-concept system with a commercially available virtual

reality glove and a random forest classifier. This implementation can detect 7 types of

SoloFinger microgestures performed with the thumb, index, or middle finger. Classification

without knowledge of the held object shows an overall accuracy of 86%, with a very low

number of false activations (17 out of 800 trials). When the held object is known, the

accuracy further increases to 89%, without any false activation in the collected dataset.

We release two datasets of SoloFinger gestures performed by a total of 21 participants

and captured using an OptiTrack optical motion capture system and a virtual reality

data glove for 36 and 5 actions, respectively. This fills a gap in the existing literature

by providing data about finger gestures while grasping. The datasets are available at:

https: // hci. cs. uni-saarland. de/ research/ solofinger/

In the rest of the chapter, we first describe the SoloFinger concept. Section 4.2

introduces the two datasets: SoloFinger (captured by us) and Daily Hand-Object Actions
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Figure 4.2: (a) SoloFinger microgestures are performed with a single finger on an object, while
holding it. (b) Tapping or different directional movements define unique gestures that can be
performed either with thumb, index, or middle finger.

(pre-existing [116]) used in our extensive analysis. We provide the validation of our concept

in Section 4.3 along with a peak score metric to initially used to compare both datasets,

effects of finger individuation, and recommendation on the set of fingers suitable with the

concept. Section 4.4 reports on the SoloFinger gesture recognition rate and the evaluation

of false activations with both datasets. A proof-of-concept system utilizing commercially

available hardware and a multiclass classifier is presented in Section 4.5. Discussion and

limitations are described in 4.6. And finally, conclusion for this chapter is outlined in

Section 4.7.

4.1 SoloFinger Concept

The sophistication of the human hand allows for dexterous hand-object interactions.

Our fingers hold objects using a wide variety of grasps, and while manipulating objects

our fingers move in versatile ways and diverse configurations. Due to this impressive

richness of movement patterns, it is challenging to define unique gestures applicable across

different grasp types and object geometries, yet mutually exclusive of everyday actions.

We introduce the concept of SoloFinger microgestures that aim to stand out from everyday

hand motions, hence reducing the likelihood of false activations.

SoloFinger microgestures are conceptually based on the observation that during ev-

eryday hand-object interaction, multiple fingers tend to move concurrently, whereas it is

rare that a single finger moves extensively on the object while all others stay idle. This

observation was informed by findings that finger movements tend to be highly correlated

during object manipulation [117, 118]. Our work leverages this phenomenon. We ground

our findings on objects that do not contain movable elements, such as mechanical buttons

or sliders.

A SoloFinger gesture (Figure 4.2b) involves moving a single finger by a considerable

yet comfortable extent, while all other fingers remain static. It is performed while holding

an object, with the same hand, and on the object itself. SoloFinger gestures are not limited
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to any specific finger. We recommend using the thumb, index, or middle finger, as the

ring and pinky fingers were shown to be less robust and also subjectively less preferable.

This generic approach allows for defining diverse microgestures. For instance, these

comprise tapping, moving a finger forward, backward or sideways, or moving in advanced

patterns, such as drawing a circle. Figure 4.2 (b) depicts the gestures we used in our

studies. Performed with either thumb, index, or middle finger, this leads to a total of 21

gesture options we have investigated. However, more SoloFinger gestures can be conceived.

In the following, we will conceptually and practically validate the feasibility of our

proposed concept. Our conceptual analysis is based on two datasets that we present in

the next section. It validates two key assumptions that underlie SoloFinger gestures:

extensive single-finger movements are unlikely to happen during everyday hand-object

actions, and SoloFinger gestures are compatible with holding diverse types of objects in

diverse grasps. Next, using a simple white-box classifier, we investigate the principled

feasibility of gesture classification and show that SoloFinger gestures create little false

activation during diverse everyday actions. Finally, we demonstrate the practical feasibility

by presenting a proof-of-concept implementation that uses commodity hardware.

4.2 Datasets for Daily Hand-Object Actions and

SoloFinger

We use a data-driven method to systematically validate our concept using two datasets:

a baseline dataset offering extensive coverage of everyday hand-object interaction, and

a dataset of SoloFinger gestures that end users performed naturally using a wide set of

grasps and actions.

4.2.1 Dataset with Daily Hand-Object Actions

We base our analysis of everyday object manipulation on a baseline dataset made available

by prior research. Garcia-Hernando et al. [116] created the first benchmark dataset that

provides precise information about hand joint positions and angles during an extensive

range of hand-object interaction. It comprises data from a diverse set of 45 everyday object

manipulation actions, performed with 26 objects. Data were captured using high-frequency

magnetic sensors to avoid any obstruction between finger contact and object surface.

Information about hand joints and fingertips was then derived using inverse kinematics.

The dataset contains 105,459 RGB-D frames with 3D location of each of the 21 joints of a

hand model.

We use this dataset to verify our assumption that single-finger movements are rare

while grasping an object and for assessing false activations caused by SoloFinger gestures.
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36. Write35. Use Flash34. Unfold Glasses33. Toast Wine32. Tear Paper31. Take Letter 
from Envelope

30. Stir29. Squeeze 
Sponge

28. Squeeze Paper

27. Sprinkle26. Scratch, Wash 
Sponge

25. Scoop Spoon24. Receive Coin23. Read Letter22. Put Tea Bag21. Put Sugar20. Put Salt19. Prick

18. Pour Wine17. Pour Milk16. Pour Liquid 
Soap

15. Pour Juice 
Bottle

14. Open/Close 
Peanut Butter

13. Open/Close 
Juice, Milk Bottle

12. Open Wallet11. Open Soda Can10. Open Liquid 
Soap

9. Open Letter8. Light Candle7. Give Coin6. Give Card5. Flip Sponge4. Flip Pages3. Drink Mug2. Clean Glasses1. Charge 
Cell Phone

Figure 4.3: The 36 actions in our dataset of SoloFinger gestures cover diverse real-world objects and grasps.
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Since our approach only focuses on handheld objects, we removed a subset of the actions

from this dataset that did not involve grasping an object (performing a high-five; shaking

hands; pressing the buttons of a calculator; closing liquid soap). We also combined actions

with very similar finger motions and grasp types opening/closing juice and milk bottle;

opening/closing peanut butter; and scratching/washing a sponge). We used the video

data provided along with the dataset to inform these decisions. As shown in Fig. 4.3,

after removal and consolidation, we are left with 36 different hand-object actions (95,788

frames). To use terminology consistent with our second dataset, we use the term “trial”

to refer to the sequence of data recorded while one participant performs one action.

4.2.2 SoloFinger Dataset

Thus far, no studies have reported detailed hand data for single-finger movements on

diverse grasp types. We therefore recorded a new dataset with hand movement data from

study participants who performed SoloFinger gestures while grasping objects. Our focus

here is to systematically investigate single-finger movements on a wide variety of objects.

However, to evaluate gesture recognition using a more sophisticated model with multiple

gesture trials and variations, we collected another dataset as described in Section 4.5.1.

4.2.2.1 SoloFinger Gestures

We centered this first study on three most basic SoloFinger gestures. These comprise the

primitive finger movements of Flexion and Extension, as commonly used in the field of

biomechanics, and Tap as a discrete motion. These 3 primitive movements are illustrated

in Fig. 4.2 (b, top row). For a baseline comparison, we also collected one trial of static

Hold for every case in which the object was held in a static pose and no gesture performed.

Before starting the experiment, we demonstrated these 3 gestures on a cylindrical prop

(which was not part of the set of objects used in the study) to familiarize participants with

SoloFinger gestures.

4.2.2.2 Actions

We used the same 36 hand actions as in the Hand-Object Actions dataset (as shown in

Fig. 4.3). We asked the participants to perform gestures while holding the object in a

static pose.

4.2.2.3 Participants

We recruited 15 participants. Not all trials were recorded from 2 participants due to

technical reasons. Therefore, all subsequent analysis uses data from the remaining 13 right-

handed participants (6 female) aged from 21 to 30 (median=27) from different professional
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Figure 4.4: (a) Study setup using an OptiTrack motion capture system consisting of 11 infrared
cameras. (b) Retroreflective markers placed on the hand to track finger movement.

backgrounds (engineering, law, literature). Participants received a compensation of €20

for their participation. Before collecting data, we manually measured the hand dimensions

of participants following the BigHand2.2M approach [119], which involves measuring the

distance between different finger joints. We found, on average, distances from the wrist to

the tips of: thumb - 121mm (SD=8mm), index - 141mm (8mm), middle - 151mm (9mm),

ring - 144mm (9mm), pinky - 120mm (10mm).

4.2.2.4 Apparatus

We used the OptiTrack™ motion-tracking system with 11 cameras running at a 60Hz

refresh rate to capture finger movements. We attached 8 facial reflective markers (4 mm

diameter): one on each finger tip and on the wrist, and two on the MCP joint (where the

finger connects to the hand) of the index and pinky fingers to help with the manual labeling.

The setup is shown in Figure 4.4. To ensure each marker is consistently labeled with a

unique ID, we manually annotated markers during post-processing in the OptiTrack’s

Motive software [120]. In total this results in 879,908 frames of data that we use in our

analysis.

4.2.2.5 Task and Procedure

The participant held an object in the dominant hand and used the same hand to perform

a SoloFinger gesture on the object with a given finger. We asked participants to perform

the gesture in such a way that it felt comfortable to them, and not in an exaggerated

manner. For each action, the participants had to perform all gestures using all fingers. If

they could not perform the gesture due to the odds of dropping the object, they notified

the experimenter, who marked this pair of gesture-action as impossible to perform. For
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possible gestures, they rated each trial for ease on a 5-point Likert scale. We randomized

the order of action and counterbalanced the order of gesture and finger used to perform

the gesture. For each participant, the experiment took approximately 3 hours and was

conducted in two sessions of 1.5 hours each. The full dataset containing recorded data for

possible gestures from 13 participants with 5,530 trials is made available to the research

community (see Section 4 for the link).

4.2.3 Data Preprocessing

We solely consider the fingertip position to assess finger movements and define the wrist

position as the origin of the coordinate system. We apply a median filter on the realigned

finger coordinates to reduce the noise. We analyze the hand data using overlapping

windows of 1-second duration with a one-frame shift. We chose one second based on the

observation that most movements were completed during this interval.

On each window, and for each finger, we create a minimal 3D bounding box to attenuate

the jitter in the signal. The bounding box covers the fingertip’s 3D positions during the

frames that constitute this window. We calculate the diagonal of the bounding box over

each window as an estimated measurement of the longest straight line the finger has moved

during this window. In the following, we refer to these diagonals as the movements of the

fingers.

4.3 Concept Validation

The two datasets described above provide data of hand-object interaction, with and

without gestures. In the following, we compare them to validate our concept by assessing

whether extensive single-finger movements are unlikely to happen during everyday actions.

Subsequently, we evaluate the feasibility of performing SoloFinger gestures while grasping

objects and derive a set of fingers we recommend for SoloFinger gestures.

4.3.1 SoloFinger Gestures Are Unlikely to Happen During

Everyday Hand-Object Actions

The goal of this analysis is to compare finger motions during SoloFinger gestures with

everyday hand-object actions. We introduce a Peak Score metric that quantifies how

strongly the movement of a single finger deviates from the movement of the other fingers.

To calculate this, we take the finger with the maximum movement and calculate the ratio

between its movement and the movement of the others:
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PeakScore =
max
f∈F

mf∑
f ′∈F

mf ′ − max
f∈F

mf

(4.1)

where F is the set of fingers and mf is the movement value over one window for a

finger f . We compute this value for all windows in the datasets. A value of 1 shows that a

single finger moved as much as the other fingers combined, whereas a value of 0.25 shows

all fingers moved the exact same amount. Hence, a high score signifies that one finger

traveled a considerably longer distance than the others.

The peak score allows us to numerically compare recorded actions that involve gestures

with actions not involving gestures. This provides insights into whether the SoloFinger

hypothesis holds. We depict the average peak scores of both datasets for each action in

Figure 4.5. One can notice that peak scores for everyday actions are impressively low

compared to actions including SoloFinger gestures. A Mann-Withney U test comparing

both datasets yields a highly significant difference (p < 0.001 with Cohen’s d=0.99). We

observe an average peak score of daily hand-object actions of 0.33 (SD=0.07). Note, these

actions include different finger movements from precise (like plugging the charging cable

into the cellphone) to dynamic motions, such as opening or closing peanut butter, or

squeezing paper. In contrast, we observe an average peak score of SoloFinger gestures of

1.70 (SD=1.95). The high standard deviations can be explained by the fact that a gesture

happens quickly, hence only raising the peak score for an instant.

In addition, we noticed that the peak score for gestures depends on the grasp type

and available surface area for finger movements. For example, the Tap gesture has similar

peak scores on actions involving similar grasp types (e.g., give coin 1.56 (SD=0.90) and

tear paper 1.49 (SD=0.70)). In contrast, other actions like pour wine have a different

grasp type, involving all fingers in contact with the object. This provides stability to do

extended gestures, resulting in higher peak scores (e.g., pour wine 4.19 (SD=3.55) during

Tap). With respect to available surface area, the actions with smaller available surface

area have smaller peak scores for Flexion and Extension when compared to Tap. This is

because the object allows less room for continuous finger movement (e.g., open peanut

butter shows a peak score of 2.99 (SD=2.66) for Tap; 1.13 (SD=0.98) and 1.08 (SD=0.71)

for Flexion and Extension respectively). Further studies should investigate how other

object properties, such as texture and weight affect finger movement..

Overall, these findings suggest that extensive single-finger movements are indeed rare

during everyday actions, hence creating an opportunity for simple yet robust microgestures.
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Figure 4.5: Average peak scores for each action present in the two datasets (i.e., with and without SoloFinger gestures). The half error bars
depict one standard deviation.
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4.3.2 SoloFinger Gestures Are Compatible with Holding Objects

We now focus on the feasibility of performing SoloFinger gestures. While holding an

object, the fingers’ primary task is to stabilize the object. It needs to be investigated if,

despite this primary task, fingers can perform SoloFinger gestures, and if this holds true

for diverse object geometries and grasps. To address these questions, we analyzed the

gestures participants made in the SoloFinger dataset as well as their subjective ratings.

4.3.2.1 Finger individuation while holding objects

A first prerequisite for performing a SoloFinger gesture is that a single finger can move

independently from others while holding the object. The Individuation Index (IID) [121]

is a widely used metric from neuroscience that measures the extent to which a finger can

move independently from others. If a finger has absolute independence, its IID is 1.00.

Conversely, a value of 0.0 denotes high dependence. We calculate this metric over three

windows and retain the maximum value for each trial. Results revealed a high average

individuation index(>0.90) [122] for all fingers: thumb = 0.98 (SD = 0.06), index = 0.97

(0.07), middle = 0.96 (0.07), ring = 0.95 (0.07), and pinky = 0.96 (0.09). This denotes the

principled possibility of performing single finger movements with all the fingers across a

diverse set of actions, comprising diverse object geometries and grasps. To investigate if

some actions are more suitable than others, we analysed the IID for all actions. We found

that the IID is high for all actions, the lowest value being 0.93 (SD = 0.10) for the action

prick.

Despite this principled feasibility of single-finger movement, it is obvious that not all

fingers can be moved while holding an object. Depending on the grasp, some fingers

are vital for stabilizing the object; moving those would cause dropping the object. For

instance, while picking up a coin, the user cannot gesture with index or middle finger, but

might move any other finger. In our data collection, participants attempted to execute

each gesture for each action with any of the five fingers. Each combination of finger, action

and gesture that a participant considered impossible to perform without dropping the

object was labeled as “impossible”. Noteworthy, for each action and for all participants,

at least three fingers could be used to perform a SoloFinger gesture without dropping the

object.

As a further metric investigating if single-finger movements are possible to perform

while holding objects, we also measured the average extent of movement of performed

gestures. These were: thumb 27.4 mm (SD = 21.1), index 29.1 mm (24.5), middle 36.2

mm (27.5), ring 38.3 mm (30.0), and pinky 45.7 mm (34.2). Overall, these extents indicate

a sufficiently large range of motions for reliably performing gestures.
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4.3.2.2 Ease of use

For each possible gesture, participants rated on a five-point Likert scale how easy it was

for them to perform the gesture. Figure 4.6 shows the normalized ratings aggregated per

finger. The results reveal that a vast majority of gestures performed with thumb, index

and middle finger are considered easy or very easy to perform. In contrast, approximately

half of the gestures performed with ring and pinky fingers were not rated as easy to

perform. Mann-Whitney U tests with Bonferroni corrections revealed highly significant

differences between all fingers (p¡0.001) except between thumb-middle (p=0.76) and ring-

pinky (p=0.76). This indicates users felt more comfortable performing SoloFinger gestures

with the thumb, index, and middle fingers.

0%
20%
40%
60%
80%

100%

thumb index middle ring pinky

1 (very hard) 2 3 4 5 (very easy)

Figure 4.6: Normalized subjective ratings of ease-of-use of SoloFinger gestures (captured for
each gesture trial).

A qualitative analysis of the video recordings of gesture trials that have received a low

rating revealed that during a considerable number of these actions the ring and/or pinky

finger were not in contact with the object, but spread out in mid-air. This comprised

actions like write, sprinkle, clean glasses, where objects are grasped with thumb,

index, and middle fingers mostly. This made it more difficult to perform the gesture, since

the participant first had to move the finger in mid-air to bring it onto the object and

then move it on the object. Several participants commented about fatigue created by the

single-finger movement in mid-air, an effect that is also mentioned in prior work [122].

4.3.2.3 Recommended set of fingers

We conclude that single-finger microgestures can be performed with all fingers. While

holding any object comprised in our dataset, a minimum of three fingers is free to move

and to perform SoloFinger gestures. This shows that SoloFinger gestures are a viable input

method for diverse everyday objects. However, ring and pinky fingers were oftentimes

not in contact with the object. According to subjective ratings, the ease of performing
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gestures with these fingers is significantly reduced. While gesturing with ring and pinky

fingers may still function well for select objects, we do not recommend using these fingers

in systems that involve a diverse set of objects or grasps. As our goal in this chapter is to

investigate gestures that are compatible with versatile objects, we center our following

analysis on thumb, index, and middle finger.

4.4 Recognizing SoloFinger Gestures and

False Activations

Recognizing gestures from sensor data can be framed as a classification task for a machine-

learning model. In our work, we opted for two different approaches: white-box and black-box.

A white-box model is a machine-learning technique that can be easily interpreted by a

human. The advantage of such an interpretable and transparent system is that one can

understand the decision process of the machine-learning model [123]. We therefore use

it as a Design Material [109] in our analysis to derive guidelines for future developers

and designers of microgestures. In contrast, black-box models are too complex to allow

a straightforward analysis of their learned decision-making. Interpreting such models

is an active and open research question [124–126]. Black-box models can, however, use

their additional complexity to learn more advanced decision-making processes. This often

results in better evaluation performance and is, therefore, usually preferred to achieve

state-of-the-art results and for real-world deployment. For example, Wolf et al. [127] found

that random forest performed significantly better when comparing the learning-based

approach with the threshold-based approach. We train and evaluate such a black-box

model to show a proof-of-concept implementation of our concept in Section 4.5.

Thus far, our findings have revealed a principled difference between SoloFinger gestures

and finger movement during everyday actions and have confirmed their compatibility

with grasping diverse objects. We now set out to assess in more detail the conceptual

feasibility of SoloFinger gestures for robust gesture detection. We first present a white-box

classification technique using thresholds. This simple model set-up enables a clear human

interpretation and understanding of the prediction process. We use it to gain further

insights into the use of SoloFinger gestures as well as for the evaluation of false activations

in a large, pre-existing dataset of daily hand-object actions. In addition, to validate

our concept and overcome the limitations of the white-box classifier, we also present a

black-box classifier in Section 4.5.2 that uses a more powerful machine learning model and

supports a more complex gesture classification setting.
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Figure 4.7: Two thresholds for idle and moving fingers are used to identify single-finger
microgestures with the white-box classifier.

4.4.1 White-box Thresholding Classifier: User and Action

Independent

As shown in Section 4.3.1, the Peak Score of SoloFinger gestures is much higher than in

everyday hand-object actions. Given this large difference, we hypothesized that a very

simple thresholding technique might be a feasible approach for gesture classification.

To understand if only the extent of finger movement contains a sufficient amount of

information, we define two thresholds, one for moving and another for idle fingers, as

illustrated in Figure 4.7. A single-finger movement is detected if the movement of a single

finger is above the move threshold, while all others remain below the idle threshold.

4.4.1.1 Train-Test Split and Label Encoding

We used the fingertips’ distance as defined in Section 4.2.3. For classification, we first

need to identify two thresholds (idle and moving). The recordings of 3 participants were

randomly selected and used to find thresholds for their data (Train set). The other 10

participants’ recordings were held out and only used for evaluation (Test set). This avoids

possible overfitting on evaluation data and allows us to better understand how well this

procedure generalizes to unseen data. To compare the classifier’s performance to the

ground truth for training and evaluation, we obtained labels (gesture or non-gesture

class) that were manually annotated. Each trial, consisting of a recording of a gesture

or non-gesture for one specific action and finger, counts as one instance. An instance

is classified as positive by the threshold model if a single-finger movement occurs in at

least one of its windows. For analysis, we built a separate classifier for each gesture (Tap,

Flexion or Extension). We, therefore, obtain three separate binary classifiers that check

for specific gesture vs. no-gesture.
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4.4.1.2 Threshold Optimization

During data collection, we observed that the extent of single-finger movement varies

depending on the finger used and the context, i.e., how the user is grasping the handheld

object. This suggests one should define tailored thresholds for each finger and adapt these

thresholds to each action. Creating individual thresholds for each action, however, is a

challenging problem to solve, requiring tracking actions during user interaction, to update

thresholds on-the-fly. Hence, for this conceptual evaluation, we aim for a simpler solution

and define a consistent set of thresholds for all users and actions. Considering these

observations, we aim at tuning 2 thresholds for our feasible set of fingers, i.e., thumb, index,

middle fingers and their primitive movement, resulting in a set of 2 × 3 × 3 thresholds.

We run Bayesian Optimization to optimize the thresholds on the training data from 3

participants [128]. We have two goals for this optimization process: 1) A gesture recognition

system should only predict a gesture if the user really performed one (precision), and 2)

The system should also detect as many of the user’s intentional gestures as possible (recall)

and not miss them. The F1 score combines both of these goals as the harmonic mean of

precision and recall. We, therefore, selected the thresholds that optimized the F1 score

on the training data. As hyperparameters for the search space for both thresholds, we

used χidle = [0, 20] and χmoving = [10, 80] mm. Table 4.1 contains the optimized threshold

values. We applied the optimized thresholds across thumb, index, and middle fingers

to classify individual gestures in the Train and Test sets. Note that we use the same

thresholds for all actions and all participants in the following analysis.

Table 4.1: Optimized threshold values (in mm).

Gesture Thumb Index Middle
Idle Move Idle Move Idle Move

Tap 16.94 22.45 12.73 21.99 7.66 15.59
Flexion 8.94 20.90 9.64 19.05 6.97 15.49

Extension 10.96 21.48 10.05 16.32 9.35 13.00

4.4.2 Evaluation of Gesture Recognition

Table 4.2 shows precision, recall, and F1 scores for the three primitive gestures, for both

Train and Test datasets. On the Test dataset, a 100% precision and a recall of 93% is

achieved for Tap. Flexion and Extension achieved a 100% precision and recall of 79% and

83%, respectively.

A video analysis of gesture trials with low recall revealed two main reasons for misclas-

sification, linked to the simple distance thresholding scheme. First, several small objects

offer limited surface area, resulting in smaller gestures, some of which were too small
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to trigger the movement threshold. For example, the flash spray head provides a tiny

surface for fingers to slide on, resulting in an average recall of only 65% for Flexion and

Extension; in contrast, Tap achieved a recall of 96% on the same surface. Second, a

few actions include fingers packed closely, thereby limiting individual finger movement.

Notably, drink mug and pour milk involve wrapping the fingers around a confined space,

which leads to finger movement smaller than the threshold. A third source of lower recall

was one action (receive coin) in which the object was held in the palm without any

finger contact. Here, fingers were not constrained by the object, and thus idling fingers

moved more extensively in mid-air, in turn violating the idle threshold.

Table 4.2: Classification performance of the white-box classifier.

Train (3p) Test (10p)
Precision Recall F1 Precision Recall F1

Tap 1.00 0.96 0.98 1.00 0.93 0.96
Flexion 1.00 0.82 0.90 1.00 0.79 0.88

Extension 0.99 0.92 0.95 1.00 0.83 0.90

4.4.3 False Activation During Daily Hand-Object Actions

For an empirical evaluation of false activation, we used the pre-existing Daily Hand-Object

Actions dataset [116], which extensively covers a wide range of grasps and actions. For

human interpretability, we used the white-box classification approach with idle and moving

thresholds. Note, when optimizing these thresholds in Section 4.4.1.2, the Daily Hand-

Object Actions dataset was held out. The simplicity of the white-box classifier allows us

to verify on a trial-by-trial basis where the SoloFinger concept does not hold, i.e., under

what circumstances an everyday action is misclassified as a SoloFinger gesture. We used

our three sets of gesture thresholds and evaluated the whole dataset successively for each

set. As the dataset does not contain any SoloFinger gesture, any detected gesture must be

considered a false activation. We flagged a trial with false activation if it was triggered by

any of the three gestures.

We found that false activation happened in 51 out of 933 trials. Figure 4.8 shows false

activation scores per action. The results show that for 23 (out of 36) actions, there were

no false activations. Most false activations relate to only five actions. On further analysis,

we found actions with most false activations possess two main properties: the object being

heavily deformable (paper) or very small (cell phone charger, match stick used to light

candle). In both cases, idle fingers do not stabilize and violate the idle thresholds, because

they either move along with the deformable object or move in mid-air because they are not

in contact with the small object. Interestingly, the Pour Wine action triggered a relatively
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Figure 4.8: Occurrence of trials with false activations in the large dataset with daily hand-object actions.
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high number of false activations, despite neither a deformable nor a small object involved.

When analyzing the video recordings of these trials, we noticed that four participants used

a specific way of holding the bottle with thumb and index finger only, while the middle

finger was suspended in air, violating the idle threshold. This was not the case with the

other subjects, and as a result no false activation was triggered during their trials.

Overall, these results are encouraging and demonstrate that SoloFinger gestures, even

with a very simple classification scheme, lead to little false activation during a wide range

of everyday actions. They are particularly robust in cases of everyday actions that include

rigid objects and involve three or more fingers in contact with the object. Most false

activations related to a few specific actions. Our findings suggest that gestures performed

on small objects can be more robustly classified if information about finger-object contact

is available. Then, the classifier could be modified to only consider fingers while they are

on the object. Classification of gestures made on deformable objects could be improved

with information about the position of fingertips on the object, rather than in 3D space.

We will show in the next section that even without additional sensor data, classification

results can be further improved by adding more feature information beyond the simple

thresholds.

4.5 Proof-of-Concept with Commodity Hardware

Our initial study confirmed the principled suitability of SoloFinger microgestures as a

robust means for gestural input during diverse everyday actions. We now demonstrate a

complete end-to-end recognition system with multiple trials recorded for each class. It is

based on commodity hardware – a virtual reality glove – for tracking finger movements

and uses a random forest classifier.

4.5.1 VR Glove Dataset

4.5.1.1 SoloFinger Gestures

In addition to the primitive finger movements investigated above (Tap, Flexion, and

Extension), we added four more gesture variations: Swipe Left, Swipe Right, Zigzag, and

Circle. The gestures are shown in Figure 4.2 (b). Each can be performed with the thumb,

index or middle finger, creating a total of 21 interaction options (7 gesture variations

× 3 fingers). It is worth mentioning that this is not an exclusive list, and many more

variations can be created using the SoloFinger concept. In addition to gesture trials, we

also recorded trials while holding the object in a static pose and while performing actions

with the object.
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edcba

Figure 4.9: Proof-of-concept system using VR glove hardware supporting five frequently used
grasps. (a) Charge Cell Phone, (b) Pour Juice Bottle, (c) Scratch Sponge, (d) Take Letter from
Envelope, and (e) Toast Wine. The screenshots show the Unity hand model.

4.5.1.2 Actions

To keep the study duration feasible while recording multiple gesture trials for a learning-

based classifier, we selected a subset comprising actions corresponding to the five most

frequently used grasps, informed by prior work [129]. (The actions are shown in Fig. 4.9).

These actions vary considerably in their duration to complete the activity (longer grasp

time), involve various motions, and possess different object geometry and rigidity.

4.5.1.3 Apparatus

We use the Noitom® Hi5 VR Glove to track finger movements [130]. The glove provides

quaternions for each joint. To capture data in a similar format as the other datasets, we

attached a cubical Unity Game Object at the fingertips and wrist on the provided hand

model.

4.5.1.4 Participants

We recruited 8 right-handed participants (4 female) aged from 22 to 26 (median = 24),

including two participants from the previous experiment. We used the same technique as

described in our first study (see Section 4.2.2) to measure participants hand sizes. We

found, on average, distances from the wrist to the tip of: thumb - 111mm (SD = 12mm),

index - 134mm (16mm), middle - 139mm (19mm), ring - 130mm (23mm), pinky - 112mm

(14mm).

4.5.1.5 Task and Procedure

We divided the data collection into two parts: 1) collect hand-object action data without

gestures, and 2) record SoloFinger gestures. We asked half of our participants to first

collect the action data and then record gesture data after a gap of approximately five

days, and vice-versa with the remaining participants. For each action, the participants

performed all 7 SoloFinger gestures with every possible finger of their dominant hand,
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except the ring finger. We recorded [8 (#participants) × (5 (#action) × 4 (#finger) × 7

(#gesture) + 5 (#hand-object action) + 5 (#static hold) - 42 (#impossible gestures))] × 10

(#trials) = 8640 trials. Informed by the empirical findings described in Section 4.3.2, we

removed the pinky gestures and did not consider data with ring and pinky for further

classification, resulting in 5,840 trials. The labeled VR Glove Data along with the precise

finger movement data captured by OptiTrack are available at the link mentioned in Section

4 to facilitate future research in this area.

4.5.2 Black-box Classifier

The white-box classifier provided insights about the properties of SoloFinger gestures at a

general level with user and action independent thresholds. The real-world deployment,

however, may provide an option either to fine-tune the thresholds in a calibration process [8],

or to leverage the complex decision boundaries used by the black-box classifiers to support

multiple gestures. Here, we present such a system to support multiclass classification.

4.5.2.1 Data Preprocessing

Similar to our previous data preprocessing strategy, we used the raw 3D coordinates of

the Unity Game Object and defined the wrist position as center. Subsequently, we applied

a median filter on the realigned coordinates.

4.5.2.2 Feature Representation and Classification

TsFresh [131] is used to obtain a feature representation for each instance, i.e. for the sensor

recording sequence of each individual trial. Subsequently, we fed the feature representation

in a random forest classifier provided by Sci-kit Learn [106]. This pipeline is not specific to

our system and was used in prior work [62]. We did not optimize the hyper-parameters of

the classifier and used the default settings with n-estimators = 500. Due to the personalized

patterns involved in some gestures, such as Zigzag or Circle, that have a high degree of

variation among users, we opted for user-dependent models. In a real setting, pre-trained

models for individuals can be easily saved and restored to avoid the burden of per-session

training. From our initial analysis, we learned that finger movements vary on different

objects. Therefore, we performed evaluation in two conditions - training with and without

action information. Thus, the classification task was to classify individual trials of all 9

classes (7 gestures + 1 static hold + 1 action without gesture) without action information

for every participant. For the condition with action information, we trained models

separately for all five actions.

We evaluate classification using the leave-one-trial-out 10-fold cross validation technique

for each participant (9 Train trials of each class, 1 Test trial - 10 permutations). Note that
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Gesture No Gesture
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Figure 4.10: Confusion Matrices with and without action information.

the imbalance in the trial count is because we combine the results across all actions which

include impossible gestures on a few fingers.

4.5.3 Results

4.5.3.1 With Action Information

Figure 4.10 (a) shows the result of the gesture classification for a setting in which the

action is known. Note that no false activations were triggered. The average accuracy is

89%. Across all actions, the Tap gesture achieved the highest accuracy of 93%, followed

by Circle with 90%. The lowest accuracy was 83% for Flexion and 84% for Extension.

We assume this is related to the VR glove’s wiring, which runs across the back of the

fingers and might have restricted bending movements. In contrast to results from the

white-box classifier, where fingers violated the idle threshold on extremely deformable

objects (paper), the black-box classification did not trigger any false activations for the

action that involved paper (take letter from envelope).

Note that this model requires prior knowledge about the action the user is performing.

In many applications, this information is readily available. For instance, a microgestural

input system devised for a specific object (such as a smart surgical tool, an augmented

drilling machine, or a smart pen) can readily use an object-specific model. Otherwise,

activity recognition [132] could be integrated to identify the ongoing action.

4.5.3.2 Without Action Information

For comparison, we report results for the more demanding case in which the action is

not known. Here, the average classification accuracy is 86%. Here again Tap achieved

the highest accuracy of 92%. The lowest accuracy of 84% was Circle, which sometimes

gets misclassified with Zigzag, particularly when performed with the middle finger. False

activations were triggered only in 2.12% of total action and static hold trials, with a total

of 17 (out of 800) trials (see Figure 4.10 (b)).
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4.6 Discussion and Limitations

Our findings demonstrate that SoloFinger gestures provide a robust scheme for microges-

tural input on the object itself, creating a low number of false activations during many

everyday hand-object actions. Here we reflect on the strength and limitations of the

proposed.

4.6.1 Sensing Technology to Implement SoloFinger

SoloFinger is not restricted to the hardware we use in our proof-of-concept implementation

and can be implemented with various sensing technologies. A sensor should provide

information about the distance that a user’s fingertips move, at approximately a 2–3 mm

resolution. Of note, the sensor does not necessarily need to provide information about finger-

object contact. However, an important requirement is that it function while the fingertip

is in contact with an object. While this prevents us from using established computer

vision techniques, which tend to suffer from occlusion generated by the object [133], recent

advances show promising results for hand-object interaction [133–135]. Objects equipped

with high-resolution touch sensors [63, 136–138] are also promising to further deploy

SoloFinger gestures, given the precise temporal and spatial contact information provided.

Furthermore, other technical approaches such as magnetic [76, 139], electro-magnetic [75],

radar-based [140], and IMU-based approaches [89] can be promising avenues for realizing

SoloFinger gestures.

4.6.2 Gesture Classification

Our results revealed that false activations are primarily caused by deformable and small

objects, such as paper or a match stick. Our current scheme considers data from fingers no

matter whether in contact with the object or not. In our white-box analysis, we found that

in-air fingers tend to make considerably larger involuntary movements while another finger is

gesturing, due to the lack of stabilizing object contact. Hence in-air fingers more frequently

violated the idle threshold and therefore led to lower recall. Future implementations

could detect finger contact using a dedicated sensor or approximate it based on grasp

or action type, and then only consider fingers that are in contact with the object for

classification. We showed that adding more features and a more advanced classifier as in

our black-box implementation can further help increase classification performance and

robustness. Furthermore, using an ensemble of classifiers may further improve the accuracy

of gesture detection: a binary classifier, as described in the white-box classification, forms

a first layer to identify the gesture and non-gesture class; this is followed by a second layer

of multi-class classification.
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4.6.3 Investigating More Objects and Specialized Actions

While our analysis did demonstrate that SoloFinger gestures could be very robust in

reducing false activations during daily hand-object interactions using diverse objects,

there remain additional cases to be investigated. First, our study did not include objects

that comprise mechanical interface elements, such as buttons or sliders, or touchscreens.

We assume that using those might involve extensive single-finger movements similar to

SoloFinger gestures. In these cases, we recommend that the designer should carefully

understand the regular finger movement on such objects and then select SoloFinger gestures

accordingly to avoid conflicts. Second, we observed that highly deformable objects can

result in increased false activation. Our datasets do not contain information about the

touched location on an object; hence it does not allow us to differentiate between finger

movements on an object and fingers that remain at the same object location but move in

3D space while the object itself is deforming. With a sensing technology that provides

on-object touch location, we anticipate that the SoloFinger concept could still work for

most deformable objects. Furthermore, the effect of specialized dexterous actions need

to be studied. Actions such as playing a musical instrument, sculpting or performing a

surgery might possibly involve more pronounced single-finger movements.

4.7 Conclusion

This chapter presented SoloFinger, a novel concept to identify and design single-finger

microgestures that are robust while grasping everyday objects. The results from our

data-driven analysis confirmed the insight that fingers tend to be either static or moving

concurrently while holding and manipulating a wide range of objects. This opens up a

space for rapid, easy and elegant microgestures performed by a single finger on the object

itself and resilient to false activations. Our simple white-box classifier achieved an average

precision of 100% and recall of 88%, with only 51 false activations among 933 action trials

of an unseen dataset. Of note, no false activation was triggered in 23 actions out of 36

actions.

We ultimately presented a proof-of-concept with commodity hardware and a black-box

classifer that can detect 7 types of SoloFinger microgestures and hand actions with an

accuracy of 89%. When the action is known, no false activations occurred in the collected

dataset of around 800 everyday actions, whereas a small number (2.12%) of trials involved

false activation in the more demanding case when a single classifier is used for all actions.

Inspired by our peers [141, 142], we also provide our dataset to the community to

further advance the understanding of dexterity of single-finger movements while grasping

objects and leverage this dexterity to design quick and seamless gestures that can be
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integrated with everyday actions. Despite the fact that covering the full hand with a large

number of sensors can help detect gestures in situations where hands hold objects, in the

real world, it is desirable to be able to have a minimal set of sensors that can perform

gesture classification at a higher accuracy. The following Chapter 5 introduces an efficient

method for detecting system microgestures in both free and busy hands with minimal

hand instrumentation.
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CHAPTER 5

Computational method for

designing sparse sensor layouts to

detect fine-grained microgestures

In Chapters 3 and 4, we have primarily focused on designing gestural input techniques to

overcome the physical constraints caused by holding an object in hand. Our focus now

shifts to implementing these gestures. Implementing always-available input recognition

systems requires consideration of several form-factor requirements and technical issues.

Noteworthy, it becomes even more challenging if the system should detect microgestures

in both freehand and busy-hand scenarios, which involve multiple grasp types. An ideal

device should be minimally invasive, low cost, and require low power. As mentioned in

Chapter 2, inertial measurement unit (IMU) sensing can overcome occlusion issues, detect

finger movements, and reconstruct the full hand when multiple sensors are attached to

different joints and work synchronously. Due to IMUs’ sensitivity to movement, a minimal

form factor device, such as a smart ring worn on an appropriate finger segment, can be

used to sense finger movements.

Sparse sensing is a well-known principle in signal processing, has demonstrated promis-

ing results in various problems to achieve a higher classification rate by optimally positioning

sensors [96]. We employ this principle together with the IMU sensing and gesture classifica-

tion. Specifically, this chapter moves beyond the conventional strategy of manually trying

out multiple locations to determine the optimal sensor locations and present SparseIMU 1 –

a computational design approach to assist interaction designers and engineers in developing

1This chapter’s contents are based on an article published at TOCHI, which I led as the first author [22].
I formulated the problem space, came up with the rapid method using feature importance, designed the
dataset collection studies, collected the dataset with the dense IMU network, led the data analysis, and
designed the GUI tool. Additionally, I started and led the collaboration with the Charité University
Hospital and TU Berlin researchers.
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Figure 5.1: We present a data-driven method for designing effective microgesture recognition
systems that only require a sparse set of IMUs. (a) The method builds on an extensive micro-
gestures dataset that includes Freehand and Grasping conditions, collected using a customized
dense IMU setup. (b) A design tool helps designers to rapidly select sparse IMU layouts for a
desired set of gestures and optional constraints. (c) It informs effective sensing solutions with
minimal instrumentation for a broad variety of applications.

gesture recognition systems. Importantly, our method supports both freehand and grasping

microgestures for creating sensor layouts with minimal hand instrumentation (RQ III:

What sensor locations on the hand provide effective recognition with minimal instrumen-

tation?). In addition, we contribute a GUI-based design tool that enables designers to

specify high-level requirements and designer-specified constraints (e.g., desired gestures

and grasps, locations on the hand and fingers that remain un-instrumented, number of

IMUs to be deployed). Based on these inputs, the tool automatically selects an optimal

sparse IMU layout matching the given preferences as shown in Figure 5.1-b. The tool

also predicts the expected performance of gesture classification, including a confusion

matrix. This allows the designer to assess the expected quality of a solution and to rapidly

explore design alternatives in a well-informed manner. To the best of our knowledge, our

computational approach and design tool are the first to facilitate the rapid, iterative design

of sparse IMU-based microgesture solutions.

The presented data-driven approach is based on our collection of an extensive micro-

gestures dataset, captured with a customized hardware setup containing 17 synchronized

IMUs placed all over the dominant hand. It comprises of 18 gestures and three non-gesture

states performed with an empty hand as well as on 12 objects that cover all the six

grasp types from Schlesinger’s taxonomy [15], collected from 12 participants. Our dataset

comprises fully annotated dense IMU data. This allowed us in evaluating the entire

combinatorial space for freehand and grasping microgestures (393K IMU layouts).

To investigate the potential of making conscious design choices when selecting a specific

sparse IMU layout, we performed a series of empirical analyses looking into effects on

recognition performance. Chiefly we have made the following observations: i) Sparse

layouts with a very low number of IMUs achieve high recognition rates of 90% F1 score
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and above, ii) the choice of finger segment for IMU placement can be crucial, and iii) IMUs

placed on a non-gesturing finger can be utilized to detect gestures from another finger.

These findings reveal insights that uncover the great potential of sparse IMU layouts in

gesture detection.

The collected microgestures dataset additionally serves as the building block for

deriving a fast method to select sparse layouts. We employ a variant of a well-known

metric from Machine Learning (ML), Feature Importance, to rapidly select optimized

sparse layouts. We validate our SparseIMU approach with the classification results from

the entire combinatorial space; the results demonstrate our method’s efficacy. While

generating results based on the entire combinatorial space is prohibitively time-consuming

for a practical design task, our method generates results within minutes on a commodity

laptop. Consequently, our approach can be used to enable rapid design iterations. We

demonstrate the benefits of the SparseIMU approach using four exemplary application

cases. Finally, our user evaluation shows congruence in the tool’s predictions and live

gesture recognition. These show how the tool enables designers and engineers to rapidly

determine optimal sparse IMU layouts, identify trade-offs, and fine-tune designs. Together,

our rich microgestures dataset and computational design tool enable a rapid iterative

design process in which designers can create, explore and modify custom sensor layouts in

a well-informed manner.

We release our fully annotated microgestures dataset captured using 17 IMUs placed

on the hand with microgestures and hand manipulations with freehand and while holding

12 objects, performed by 12 participants - overall, it consists of 13,860 trials (3.4M

frames). In addition, we also share the computational tool code at: https: // hci. cs.

uni-saarland. de/ projects/ sparseimu/

In the following, we first describe the Microgestures dataset in Section 5.1. Then, we

present results from a series of analysis in Section 5.2. We introduce our faster method

for layout selection and the corresponding evaluations in Section 5.3. Next, the GUI-

based design tool and its evaluation with the entire combinatorial classification results are

presented in Section 5.4. It additionally covers the state-of-the-art techniques of gesture

sensing, recognition, and computational design tools. Section 5.5 describes application

scenarios from diverse and representative domains to illustrate how designers and engineers

can benefit from our design tool, which is followed by the evaluation of the tool’s output

and live gesture recognition in Section 5.6. Discussion and Limitations are presented in

Section 5.7. Finally, Section 5.8 describes this chapter’s conclusion.
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5.1 Microgestures Dataset

Researchers in the computer vision community have contributed various datasets comprising

hand-object manipulations [116, 143, 144]. Yet, these do not include explicit finger gestures.

Our dataset is the first attempt to collect hands-free and busy interaction along with

finger microgestures. We use a dense network of 17 IMUs to capture high-dimensional

sensor data with nearly full degrees of freedom (DOFs) of the hand/finger space. This is

different from prior work wherein a single sensor has been shifted to different locations in

different trials for finding the optimal placement [89]. Our high-dimensional data enables

employing novel algorithmic approaches to uncover hidden phenomena; some of them

are mentioned in the following sections. Overall, our dataset focuses on finger gestures –

performed by different fingers – on objects with diverse grasp types, as well as with free

hands. It also comprises hand-object manipulations with different intents, such as holding

an object, using it as suggested by its primary purpose (e.g., writing with a pen), and

handling it in an unscripted manner (e.g., fiddling). Although the dataset is intended to

analyze microgestures, it can serve other purposes in future research, including enriching

our understanding of finger movements during hand-object interaction, creating synthetic

data, or pre-training neural networks.

5.1.1 Dense IMU Setup

Instead of utilizing commercially available gloves or marker-based solutions [14, 145], we

performed the data collection with a customized hand sensor system that preserves the

cutaneous properties of the hands, the sense of touch, and does not suffer from occlusion.

The sensor system is shown in Figure 5.2. It offers an unobtrusive setup of 17 synchronized

IMUs [146, 147] that provide detailed information about the full articulation of a human

hand. It includes 9DOF inertial sensors with 3-axis accelerometer, 3-axis gyroscope,

3-axis magnetometer (MPU9259, InvenSense Inc., CA, USA) with a footprint of 3 × 3

mm, deployed on all three segments of all five fingers using a medical-grade skin-friendly

adhesive tape (Helvi Mogritz).

The finger IMUs are mounted on flexible sensor strips and connected to a base unit

attached at the hand’s back, which includes an additional IMU. A customized fixture with

a thin velcro belt is used to fasten the base unit on the hand, and the data is sent to

the computer through a USB connection. We also attached a wireless IMU (RehaGait,

Hasomed GmbH, Germany) on the distal forearm, to include data comparison from existing

consumer devices like smartwatches or fitness trackers, resulting in a total of 17 IMUs. All

IMUs are precisely time-synchronized, and the data is captured at a framerate of 100 Hz.

We refer to Salchow-Hömmen et al. [146] for full details on formal hardware validation,

which found that sensor readings are accurate enough to infer fingertip positions with errors
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Figure 5.2: Hardware setup with 17 synchronized IMUs placed all over the dominant hand. It
preserves cutaneous properties and allows unobtrusive interaction with complex object geometries.
The left image labels describe the spatial notation of each IMU used in our analysis.

< 2 cm. For the use of the raw IMU data, the hardware does not require any calibration,

making it particularly practical and feasible for studies. However, we integrated an initial

pose with the hand flat on the table and the straight thumb abducted at a known angle for

a few seconds at the beginning of each subject’s recording, in order to boost the dataset’s

versatility in light of potential future uses where a baseline or calibration pose might be

desired. We also note that the framerate of our dense setup of 17 IMUs is in line with that

of Xu et al.’s [148] recent work, which suggests that 100 Hz is sufficient for hand gestures’

classification. Furthermore, prior studies have found that even the quick movements of

the fingers are slower than 10 Hz [149, 150].

5.1.2 Objects Representing Grasp Variations

We collected data in Freehand and while Grasping an object conditions. For the latter, we

selected a set of objects that are representative of real-world tasks. Specifically, we chose

objects labeled in the VLOG Dataset [151] which is based on internet video logs of everyday

activities. To ensure we have representatives for each type of grasp, we categorized the

objects based on Schlesinger’s Grasp Taxonomy [15]; this has been widely employed by

prior works [12, 20, 152, 153]. For each grasp type, we focused on non-deformable objects

with two size variations Small (S) and Large (L). The VLOG Dataset does not contain

objects that correspond to Small Tip and Spherical grasps, which is presumably a result

of not all grasp types being equally well-represented in everyday life [129]. Therefore, we

added two additional objects, a Needle and Pestle, to obtain an exhaustive list of objects

covering all grasp types [20]. The complete set of 12 objects and their corresponding grasp

type is shown in Figure 5.3.
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Cylindrical Palmar Hook Lateral Tip Spherical

Knife
(cutting)

Book
(reading)

Cup
(holding)

Spoon
(pouring)

Needle
(sewing)

Pestle
(crushing)

Bottle
(drinking)

Box
(carrying)

Bag
(carrying)

Paper
(reading)

Pen
(writing)

Bowl
(placing)

Large

Small

Figure 5.3: Using a dense network of 17 IMUs placed on the hand, the microgestures dataset
was collected for Freehand and while Grasping 12 objects covering each of the six grasp types
with two variations.

5.1.3 Gesture Set and Non-Gesture States

For Freehand and Grasping conditions, we collected finger movements while performing

microgestures and non-gesturing states. For the microgestures, we focused on conscious

subtle finger movements that do not require altering the grasp. We selected six primitive

finger movements based on bio-mechanical characteristics [154, 155], shown in Figure 5.4:

Tap, Flexion, Extension, Abduction, Adduction, and Circumduction. For consistency of

gestures across different fingers, we use the Ring finger as the reference to define Abduction

(away from the Ring finger) and vice-versa for Adduction gestures. Furthermore, the

swipe gesture was recorded with the participant’s finger motion from one extreme until it

reached the opposite extreme. Following Ashbrook’s definition of micro-interactions [37],

we further limited our set to gestures with a short duration (4 seconds or less). Moreover,

we centered our data collection on single-finger gestures because they promise to increase

robustness [21]. In terms of gestural input, these movements translate to both - continuous

and discrete gestures through directional sliding and tapping.
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Freehand                                                               Grasping

Tap                     Flexion                Extension                                   Tap                          Flexion                   Extension

Abduction             Adduction        Circumduction                       Abduction                 Adduction             Circumduction

Figure 5.4: The Dataset includes six gestures performed with three fingers - Tap, Flexion,
Extension, Abduction, Adduction and Circumduction - resulting in a total of 18 gestures.
Additionally, data was recorded for three non-gesture classes: Static hold (just holding the
object), performing Primary action while holding the object, and an Unscripted action where
the user was free to perform any custom movements.

The collected non-gesture states include a variety of finger movements that users

perform consciously or unconsciously during conventional hand/object interaction. For

instance, free hand movements while talking, adjusting the grip, turning the object

for visual inspection, manipulating the object, or fiddling. For capturing non-gesture

conditions, we recorded Static hold, Primary action (e.g., writing with a pen, drinking

with a glass), and Unscripted actions (e.g., adjusting grip, fiddling). The participants were

given no explicit instructions while the data for Unscripted action was recorded.

Since moving a finger while holding an object risks dropping the object, we empirically

verified which fingers can be moved while holding objects. To consolidate our choice of finger

movements, we conducted a pilot study. Two interaction design experts independently

recorded their response on a 7-point Likert scale (1: impossible to perform and leads to

dropping the object; 7: very intuitive and easy to perform). This resulted in a total of

360 gestures: 6 (gestures) × 5 (fingers) × 12 (objects) inspected by each expert. Of 720

Likert scale readings, 42 gestures received a rating of 1 by both the experts and these were

marked as impossible. Consequently, we focus on the Thumb, Index, and Middle fingers

as our main gesture fingers; a choice which is in-line with prior works [4, 21].

5.1.4 Participants

We recruited 12 participants (6M, 6F, mean age: 26.1; SD: 3.4) with different professional

backgrounds, including computer graphics researcher, firefighter, and kindergarten teacher.

Ten were right-handed, and two reported themselves as ambi-dexterous. We measured
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their hand size from the Wrist to each finger’s tip and found an average length to Thumb’s

tip: 137mm (SD:8mm), Index: 181mm (SD:12mm), Middle: 192mm (SD:12mm), Ring:

181mm (SD:10mm), and Pinky: 157mm (SD:9mm). For context, the average hand length

(middle finger’s tip to the wrist crease) is 193 mm and 180 mm for males and females,

respectively [156]. Participation to our data collection was voluntary while adhering

to the institution’s COVID-19 rules and regulations, and each participant received a

compensation of 30 Euros.

5.1.5 Task and Procedure

Before starting the data collection, we demonstrated the gestures on an abstract cylindrical

object that was not used any further. Once the participants got familiarized with the

gestures, we attached the hardware to their dominant hand, and they performed the

initial pose by placing the hand on the table. For the Grasping condition, we asked the

participants to perform gestures on the object (while maintaining the grasp), and use

the palm as the surface for the Freehand condition. Of note, the same hand was used

for holding the object and for gesturing. Furthermore, the directional orientation was

kept constant across each participant. They performed all the gestures while sitting on a

chair, except for Box and Bag, wherein we systematically added variation in posture and

orientation for each participant by asking them to perform the gestures while standing and

facing perpendicularly. We counterbalanced the two conditions (Freehand and Grasping)

and further counterbalanced the order of objects (grasp variations). Once the Freehand or

the Grasp variation was selected, we presented the gestures with the specific finger name

and non-gesture states in a randomized order. We recorded five trials for each gesture. To

collect data from non-gesture states without interruption, we recorded one long sequence of

around 30 seconds and split it into five trials. The dataset collection took approximately 3

hours per participant with breaks in-between to avoid fatigue. The sessions were also video

recorded. Using a custom MATLAB application, the experimenter manually annotated

the trials during data collection with the participants orally communicating the start

and stop of the gesture. The labels include information about the freehand or specific

grasp variation, gestures along with the instructed finger, and the three non-gesture states.

Overall, our dataset contains a total of 13,860 trials (1,155 trials × 12 participants) with

18 different gesture and three non-gesture states performed on 12 Grasp variations and

with Freehand.

5.2 Dataset Analysis to Understand IMU Placement

The usage of IMUs in HCI has been explored for gestural input; the most common

approach is to place a single IMU on the gesturing finger [88, 89, 157–159]. However,
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very little is known about the relationship between the precise position of IMU(s) and

its effect on classification performance. To understand the multitude of factors affecting

the overall classification performance, we sought to systematically investigate different

perspectives, including the quantity of IMUs, variation between different finger segments,

alternative IMU placement location to simultaneously achieve higher recognition and

usability, lastly, evaluate the feasibility of a user-independent recognition model. An

in-depth understanding would not only enable taking full advantage of the IMU sensing

capabilities and fine-tuning IMU placement to achieve the maximum performance for

a given set of gestures, but also uncover hidden patterns to identify optimal designs of

gesture sensing devices.

This section first describes our classification pipeline and a series of empirical analyses,

which offers new insights into the design of sparse IMU layouts for hand microgesture

recognition.

5.2.1 Feature Extraction and Classifier Selection

Aiming to understand the underlying factors affecting performance rate due to IMUs’

location, we started off by creating a classification pipeline. Given the size of our search

space has the large number of 393K layouts, we created a gesture detection pipeline with

two essential requirements: scalable and rapid train-test time.

5.2.1.1 Feature Extraction

From a given trial and for each of the 9 axes of an IMU, we extract six statistical features:

maximum, mean, median, minimum, standard deviation, and variance. In total, the

number of features from all 17 IMUs × 9 axes × 6 features amounts to 918. To compile

this list of features, we drew inspiration from the automatic feature extraction library,

TsFresh [131], which has shown promising results in prior work on gesture and activity

recognition [62, 160, 161]. Due to multiple sensors and reduced computational load, we

used the minimum configuration of the library’s functionalities. To further minimize the

effect of different trial lengths, we removed the sum and length features. Due to the lower

sampling rate of our 17-IMUs setup as compared to single-sensor approaches [57], we

did not extract features from the frequency domain. However, we note that our released

dataset will allow the research community to feed more features of TsFresh into the neural

network [161], take advantage of a single feature, such as derivatives as input into the

neural network [89], or further perform feature engineering for input in non-neural-network

or neural-network classifiers to improvise the recognition rate based on the optimal location.

In Section 5.2.1.4, we show the correlation of our selected features and a different set of

features from related work to show the correlation in the ranking of layouts.

81



5.2.1.2 Method

We selected 10 random participants as training set and the remaining two as test set (80:20

split) and created grasp-independent models, i.e., the class labels do not include any grasp

information. We also performed a leave-one-person-out analysis in Section 5.2.5. For our

multi-class classification, we used 19 classes: (3 fingers × 6 gestures) + 1 Static hold.

Different IMU layouts may contain different amounts of IMUs (from 1–17); therefore, to

compare different state-of-the-art classifiers and estimate the classification time required

for the full combinatorial classification, we evaluated randomly selected 100 layouts for

a given IMU count of 1–17, totaling 1,435 layouts. Note, for count = 1, 16, and 17, the

total possible layouts are slower than 100.

5.2.1.3 Classifier Selection

We fed our extracted features into multiple commonly used classifiers to evaluate their

recognition rate and training time. Specifically, we used scikit-learn’s implementation

of Support Vector Classification (SVC), Logistic Regression (LR), k-nearest neighbors

(KNN), Random Forest (RF) with max depth = 30; and PyTorch implementation for

Neural Network (NN) with 4 fully connected layers of decreasing hidden layer size (n =

1024, 512, 256, ReLU activation) and a final softmax activated classification layer. Only

NN models were trained on a GPU machine and others on a 40-core CPU. We used the

default parameters for all the classifiers to perform trial-by-trial basis classification. As a

performance metric, we used the macro average of the F1 score because it considers both

precision and recall.

5.2.1.4 Results

As shown in Figure 5.5, the F1 score and training time largely depend on the choice of

classifiers. Since we wanted to use the same classifier for multiple settings in the following
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Figure 5.5: Comparison between average F1 score obtained by different classifiers and their
training time for 1,435 IMU layouts. The error bars depict one standard deviation.

82



analyses, as well as the later-described computational design tool (see Section 5.4) – we

opted for Random Forest. This classifier achieves an average F1 score close to the highest

one obtained by Neural Network while having a lower training time than Neural Network.

Furthermore, RF models can be easily computed on a consumer-grade CPU machine.

In-line with findings from prior work [127], our results show that Random Forest Classifier

has superior performance than KNN.

As shown above, our released dataset allows generating results with various classification

models techniques. Through our analysis, we found that, while different models may yield

different accuracy levels, the order of performance of individual layouts is very similar.

Specifically, to understand our results’ dependence on a particular classifier, we used F1

scores of all layouts with sensor count = 1 from the top-performing classifiers, namely

KNN, Ridge, RF, and NN. Following that, we sorted the results alphabetically by IMU

labels. Then, using a pairwise Spearman correlation (as used by Guzdial et al. [162] for

comparing ranked lists), we obtained a correlation of 0.919, 0.975, and 0.919 with p<0.001

for RF vs. KNN, NN, and Ridge, respectively.

In addition, we conducted a similar analysis to understand the change in the ranking of

IMUs for different sets of features. We selected five features (maximum, minimum, mean,

skewness, and kurtosis) used in the existing literature on IMU sensing [88] and trained 17

models with RF. Subsequently, similar to the analysis comparing different classifiers, we

calculated the Spearman correlation on the F1 score of alphabetically-sorted IMU’s list

from both feature sets. Our results show a high correlation of 0.995 with p<0.001 between

the layout ranking produced by 2 different set of features, indicating that while selecting

other features may result in a different F1 score, the order of IMUs remains very similar.

5.2.2 Identifying Sparse Layouts for a Given IMU Count

The large count of IMUs offers the possibility of creating vast layout combinations. However,

not every count and layout may produce a similar recognition performance. Therefore, an

important aspect that we examined was identifying the best performing sparse layout for a

given number of IMUs. This analysis provides three major insights: Firstly, it allows us to

understand how the recognition performance varies with the number of IMUs. Secondly,

it gives insights into the interval in which F1 scores fall for any given number of IMUs.

Lastly, the results inform the optimal IMU placement location with a fixed budget of

sensors [96]. Of note, we use the term IMU Count to refer to any given amount of IMUs

from 1–17.
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Figure 5.6: Full Combinatorial Results: Each circle represents the F1 score for each
of the 393K models classifying 19 classes in Freehand, Grasping, and Both Combined (Free-
hand+Grasping) conditions. The blue shows the maximum F1 score, and the green depicts the
top 5% layouts in a particular IMU count.

5.2.2.1 Method

To explore the full combinatorial space, we trained models with all possible layouts from

1 to 17 IMUs on our initial train-test split as described in Section 5.2.1.2. Moreover, to

systematically understand the variation in performance for both types of microgestures,

we performed this analysis for three conditions: Freehand, Grasping, and Both Combined.

This totals to 3 × (217 − 1) = 393,213 models. For each model, we performed multi-class

classification with 19 classes: (3 fingers × 6 gestures) + 1 Static hold. Note, Grasping

and Both Combined conditions utilized grasp-independent models; therefore, we did not

encode grasp information in the class labels. In Section 5.2.6, we compare our results with

grasp-dependent models.

5.2.2.2 Results

Figure 5.6 plots the F1 score on the test set from each 393K models trained in all three

conditions (Freehand, Grasping, Both Combined), organized by the count of IMUs present

in the model. We now discuss each condition in turn:

1. Freehand microgestures: The results provide a complete overview of the large per-

formance difference that depend on the IMU count and, for a given IMU count,

on the specific location of IMUs comprised in a model. As shown in Figure 5.6-a,
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the highest F1 score for count = 1 is 0.62 (M-midd). Adding a second IMU in-

creases the F1 score to 0.84 (T-midd, M-dist); the F1 score further increases to 0.90

(T-midd, I-prox, M-midd) and 0.93 (T-midd, I-prox, M-dist, R-prox) with 3 and 4 IMUs, respec-

tively. On the contrary, the lowest F1 score for count = 1 was 0.2 (Forearm), and for

count = 2 was 0.19 (R-prox, Forearm). Amongst all models, the maximum F1 score of

0.97 (T-prox, I-dist, I-prox, M-dist, M-midd, R-midd, P-midd, Forearm) is achieved with count = 8.

It should also be noted that a F1 score of 0.90 can be achieved with as little as 3

IMUs, and henceforth only a maximum increase of 4% occurs with the addition of

more IMUs. The F1 score drops to 0.89 when all 17 IMUs are included. To further

investigate this drop, we trained 100 classifiers with random states from 0-99 for

count = 17. We only change the seed values for this investigation, while training

classifiers for other analyses have a constant seed value with default parameters to

allow reproducible results. Out of 100 models, 4 models achieved the maximum F1

score of 0.96, which is close to the maximum F1 score of 0.97 achieved by some other

higher counts. Overall, 93 out of 100 models achieved an F1 score of greater or equal

to 0.90, and only 7 models have an F1 score in the range of 0.88 (lowest) and 0.89.

This explains the reason for the drop we observed at count = 17.

2. Grasping microgestures: Here, our classification setting is more challenging than

Freehand microgestures due to the inclusion of all 12 Grasp variations. This results

in a slight drop in overall performance (see Figure 5.6-b). For count = 1, the highest

F1 score was 0.54 (I-midd). Adding an additional IMU (count = 2) gradually increased

the performance to 0.72 (I-prox, M-midd), for count = 3 to 0.88 (T-dist, I-prox, M-prox), and

for count = 4 to 0.90 (T-dist, I-midd, I-prox, M-prox). Similar to Freehand , the IMU located

on the forearm achieved the lowest F1 score of 0.17 for count = 1. Across all models,

the maximum F1 Score of 0.93 (T-dist, I-dist, I-prox, M-dist, M-prox, Handback) is first achieved

at count = 6. Note, the general pattern of variation in the maximum and minimum

F1 score is similar to the Freehand condition, and an F1 score of 90% can be observed

with a small number of IMUs (count = 4). Afterwards, the maximum increment in

F1 score is only 3%.

3. Both Combined microgestures: As shown in Figure 5.6-c, we observed a similar

overall trend when gestures in Freehand and all Grasp variations were classified

together. The maximum performance achieved with one IMU was 0.53 (I-midd).

Adding more IMUs resulted in an increase of F1 score to 0.74 (I-prox, M-midd), 0.88

(T-dist, I-prox, M-prox) and 0.89 (T-dist, I-prox, M-midd, M-prox) for IMU count = 2, 3 and 4

respectively. Conversely, the minimum F1 score for counts = 1, 2, 3 and 4 is 0.18
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Figure 5.7: Occurrence Score of each IMU in the top 5% layouts from count 1 to 17. Across all
IMUs, we observed a minimum score was 0.33 and maximum of 0.84.

(Forearm), 0.23 (P-dist, P-midd), 0.26 (P-dist, P-prox, Forearm), 0.28 (P-dist, P-midd, P-prox, Forearm)

respectively. The min and max difference of the F1 score within each IMU count

shows a similar pattern as the other two conditions. Across all counts, the maximum

F1 score of 0.92 (T-dist, T-midd, I-dist, I-prox, M-dist, M-midd, M-prox, R-dist) is first achieved with

count = 8. At count = 5, an F1 score of 91% is obtained, and only a 1% increase is

seen with more IMUs.

5.2.2.3 Relevance of each IMU

Multiple layouts may achieve a performance close to the top-most layout in each count

as shown in Figure 5.6. To better understand what locations on the hand and finger are

more likely to contribute to top-scoring layouts, we analyzed the top 5% best-scoring

layouts (marked in green color in Figure 5.6). Specifically, we introduce an Occurrence

Score metric that quantifies the occurrences of each IMU in the top 5% layouts (see Eq.

5.1). Here, a higher score of an IMU indicates its frequent presence in the top layouts.

For a set I of possible IMUs, the Occurrence Score of an IMU i is

occi =
1

|I|

|I|∑
k=1

occurrences of IMU i in top 5% layouts with k sensors

number of top 5% layouts with k sensors
(5.1)

where we calculate the mean of an individual IMU’s occurrence over all IMU counts.

It is important to note that this is not the overall occurrence in the total space of 393K

models but rather how frequently it occurs in the top layouts.
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5.2.2.4 Results

We examined the Occurrence Score of each IMU as shown in Figure 5.7 and derived

patterns that guide our further analysis. Since the gestures were performed by Thumb,

Index, and Middle fingers, the IMUs from these three fingers appear more often in the

top 5% layouts in all three conditions (Freehand, Grasping, and Both Combined). Inter-

estingly, the Occurrence Score varies greatly across different segments of the same finger.

The comparison between Freehand and Grasping conditions revealed three considerable

differences: First, we observe that an IMU placed on the tip of the Thumb (T-dist) has

a high Occurrence Score of 0.67 for Grasping microgestures, whereas it is only 0.33 for

Freehand microgestures. We assume this is related to the nature of gestures performed on

the palm in the Freehand condition, wherein the Thumb stretches out at a larger distance

and bends lesser than during Grasping microgestures. In a typical grasp, the Thumb

supports the object; hence the distance to reach the surface for performing a Grasping

microgesture is relatively smaller. Second, for all fingers except the Thumb, Grasping

microgestures tend to favor IMU placement on the proximal segment over the fingertip.

In contrast, Freehand microgestures show a clear tendency to favor placement on the

fingertip for Index and Middle fingers. Below, we investigate the effect of IMU position on

classification performance in more detail.

5.2.2.5 Implications

For all three conditions, we noticed that a higher IMU count does not necessarily translate

to higher recognition performance. F1 scores close to the optimal can be achieved already

with a fairly small number of IMUs (3 to 6). We observed a large variation in performance

depending on where a given number of IMUs is placed on the hand and fingers, which also

depends on the microgesture condition as shown in Figure 5.7. These findings highlight the

importance of creating a layout by choosing a right number of IMUs, a right combination

of fingers, and finger segments for the desired set of grasp and microgestures to achieve

optimal recognition accuracy.

5.2.3 Performance of IMU Placement at Segment Level

Having identified that the choice of finger segments for IMU placement can be crucial for

obtaining high recognition performance, we now aim to investigate the influence of finger

segments on recognition performance more systematically. This also informs the design of

minimal form-factor devices that place IMUs only at the optimal segment.
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Figure 5.8: F1 score of single IMU models trained for multi-class classification. The classes
include six different gesture types possible with each finger (+1 static) for each model during
Freehand microgestures. Note that different models were trained with IMU on each segment
(distal, middle, proximal) and for different gesturing fingers.

5.2.3.1 Method

We used our initial 80:20 train-test split of the participants’ data and evaluated using

a single IMU under multiple settings. To reduce any effects caused by different grasp

variations, we created grasp-dependent models. Moreover, for a clear understanding of

individual fingers and their respective gestures, we performed finger-wise classification, i.e.,

atmost six gestures and one static hold class per finger. Overall, we trained 17 single-IMU

layouts × [(1 Freehand × 3 gesturing fingers) + (9 Grasp variations × 3 gesturing fingers)

+ (3 Grasp variations × 1 gesturing finger)] = 561 models. For the analysis in this section,

we focus on the IMU on gesturing fingers and on three representative grasp variations that

have been identified in prior work to each represent a cluster of Grasping microgestures [20].

The detailed results, including IMUs on non-gesturing fingers and all 12 grasp variations

will be released with our dataset.

5.2.3.2 Results

As illustrated by Figures 5.8 and 5.9, the F1 score varies greatly across different segments

for Freehand as well as Grasping microgestures. In particular, it indicates that for some

cases, the F1 score for a gesture may even rise from 0.0 to 1.0 depending on what segment

the IMU is placed on the same finger. In the following, we highlight this effect for Freehand

as well as Grasping microgestures.

1. Freehand: The kinematics for each finger varies, and the motion required for each

gesture is also different. As a result, the F1 score can have a large difference across

segments (shown in Figure 5.8). We observed that the optimal segment is different

for different fingers. In particular, for Thumb gestures, the middle segment (midd)

achieved an average F1 score of 0.93, whereas the other two segments, i.e., distal

(dist) and proximal (prox), have a relatively lower score of 0.72 and 0.60, respectively.
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The optimal segment for Index gestures is different: here, the prox-segment has

an average F1 score of 0.91, while the performance on the other two segments is

considerably lower with 0.78 (I-midd) and 0.76 (I-prox). For the Middle gestures,

all segments achieved a similar F1 score of 0.60-0.65, the segment choice is still

prominent for individual gestures wherein the performance may differ with 20-40% for

Adduction, Abduction, and Circumduction. In contrast, the performance difference

across segments is lower for the Tap gesture (10–13%). Surprisingly, due to the hand

bio-mechanics, the IMU on the Handback can detect Thumb Flexion and Tap with

an F1 score of 0.82 and 0.70, respectively. This finding can be beneficial to detect

finger gestures in settings where a user might not want to wear any sensor on the

finger (e.g., while working in a kitchen or car workshop). We investigate this aspect

of recognizing gestures from a non-gesturing finger in more detail in the next section.

2. Grasping: Our results reveal a strong influence of segment choice for Grasping

microgestures (see Figure 5.9). Similar to the Freehand condition, we observed a

large difference in F1 score across different segments of the same finger. Furthermore,

it is noteworthy that there are dissimilarities in the pattern of optimal segment

across different grasp variations. This relates to the distinctive finger postures in

different grasps, affecting how a finger moves while performing the gesture. In

particular, for the Thumb and Index gestures on Cylindrical-S and Spherical-S, the

dist segment appeared as the optimal segment in both grasp variations. However,

for the Middle finger gestures, the optimal segment is different across all three grasp

variations (Cylindrical-S has dist, Lateral-S has mid, and Spherical-S has prox).

Moreover, the Index and Middle gestures on Spherical-S have a relatively lower

variance across segments, which could be explained by the bigger real estate that

affords comparatively larger movements than the other two grasp variations. In

general, the substantial difference in the recognition performance at the segment

level is due to the intricacies of the grasp variation, finger, and gesture.

Thumb Index Middle Middle Thumb Index Middle
A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G
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Gestures
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F1 score
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Figure 5.9: F1 score of single IMU models trained for multi-class classification. The classes
include 6 different gesture types possible with each finger (+1 static) during three exemplary
grasp variations (Grasping microgestures).
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5.2.3.3 Implications

Depending on the grasp, finger and type of movement during the gesture, the single-IMU

performance across segments greatly varies. This formally validates our initial findings

from the full combinatorial classification results: The choice of finger segment for the IMU

sensor placement can have a very strong influence on classification performance. However,

since these classification results differ based on the subset of grasps and chosen gesture

classes, a one-fits-all design solution will likely not lead to best results. Hence, we propose

a computational design tool in Section 5.4, which provides layout recommendations based

on the user-defined parameters.

5.2.4 Placing IMU on a Non-gesturing Finger

Finger co-activation is a widely known phenomenon in bio-mechanics [121]. Our goal is to

leverage finger co-activation and investigate if micro-movements caused in neighboring

fingers are sufficient for gesture detection from a non-gesturing finger. This would be

beneficial in situations where placement of an IMU on the gesturing finger would hinder

the primary activity–e.g., having an IMU on the Index finger may hinder situations like

using a knife. In such scenarios, placing the IMU on an alternative location capable of

detecting gestures from a neighboring finger would be more desirable.

5.2.4.1 Method

To investigate the possibility of detecting gestures with any single finger, we used our

initial 80:20 train-test split and trained five models for each of the three gesturing fingers;

each model comprised a total of three IMUs placed on every segment of the respective

finger. For a detailed analysis, we performed grasp-dependent and finger-wise classification.

This gives a total of 5 fingers w/ IMUs × 3 gesturing fingers = 15 models for Freehand.

We trained another 150 models [(5 fingers w/ IMUs × 9 grasp variations × 3 gesturing

fingers) + (5 fingers fingers w/ IMUs × 3 grasp variations × 1 gesturing finger]. In each

multi-class model, we included all six gestures for an individual finger and the static class

- totaling up to seven classes.

5.2.4.2 Results

Figure 5.10 and 5.11 show the F1 score on the test set for Freehand and Grasping when

models are trained with IMUs on different fingers. These results indicate the feasibility of

detecting gestures from IMUs on the non-gesturing finger:

1. Freehand: We observed the effect of finger co-activation and the feasibility of detecting

gestures from IMUs on a non-gesturing finger for all three gesturing fingers (see
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Figure 5.10: F1 score of IMUs placed on gesturing as well as non-gesturing fingers for multi-class
classification. The classes include six different gesture types possible with each finger (+1 static)
for each model during Freehand microgestures. T, I, M, R, and P refer to the IMUs on Thumb,
Index, Middle, Ring, and Pinky finger. The gesturing finger is denoted with a blue circle.

Figure 5.10). Unsurprisingly, placing an IMU on the gesturing finger results in a

higher F1 score in most cases. However, it is important to note that depending on

the finger and gesture, the IMUs on a non-gesturing finger can even yield a higher

F1 score than when placed on the gesturing finger. This is particularly visible with

gestures performed by the Middle finger. This observation is in line with findings

from prior work that have reported the middle finger to induce higher involuntary

movement in adjacent fingers [121, 122]. For Middle Circumduction, for instance,

the F1 score on a non-gesturing finger (Thumb) increases by 34% (from 0.67 to

1.00) compared to placing an IMU on the gesturing finger (Middle). This can be

explained by the involuntary Thumb movement caused while performing the Middle

Circumduction on the palm. Also, Index Adduction achieved a 5% higher F1 score

through placing IMUs on a non-gesturing finger (Middle) than gesturing finger. Even

though Thumb has the least tendency amongst all the fingers to induce movements

in the neighboring fingers, placing an IMU on the non-gesturing finger (Middle

or Ring) produces a similar F1 score as that on the gesturing finger (Thumb) for

Flexion, Extension and Circumduction. These promising results of placing an IMU

on the non-gesturing fingers show the feasibility of detecting gestures beyond the

conventional placement strategies.

2. Grasping: As mentioned in prior work, fingers in contact with the object get support,

thereby reducing the effect of co-activation [21]. Thus, all Thumb and Index gestures

on Cylindrical-S (Knife) achieved the highest performance when the IMUs are placed

on the gesturing finger. In spite of that, we observed that the non-gesturing finger

can detect Thumb and Index gestures with a drop of only 15–20% from the F1 score
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obtained by an IMU on the gesturing finger. While this reduction is considerable, it

may be acceptable for some gestures in settings that do not allow for augmenting

the gesturing finger with IMUs. Based on the grasp type and gesture, the IMUs on

the non-gesturing finger may even achieve a higher performance than the gesturing

fingers, e.g., on Spherical-S (Pestle), Thumb Extension and Circumduction achieved

a higher F1 score of 0.83 and 0.95, respectively, through IMUs on the non-gesturing

finger (Index). In contrast, the IMUs placed on the gesturing finger (Thumb) achieved

a comparatively lower score of 0.67 and 0.87. On Cylindrical and Spherical grasps,

all fingers are in close contact with object but not all grasp types have the same

contact fingers. For example, while holding Lateral-S (Spoon), the Ring and Pinky

fingers are suspended in the air, which causes an involuntary movement in the other

adjacent non-gesturing finger As a result, the gesturing (Middle) and non-gesturing

(Pinky) finger IMUs achieve a similar F1 score for Middle Abduction and can also

detect Middle Flexion with an F1 score of 0.80 (0.15 lower from the IMUs on the

gesturing finger). Additionally, we observed the possibility of detecting gestures with

non-gesturing fingers that are in contact with the object. With these many different

factors affecting the performance, it is challenging for a designer to place the sensor

at an alternative location intuitively.

Implications When the hands are busy, instrumenting gesturing fingers might not

be possible in all cases. For example, while writing, instrumenting fingers involved in

gripping the pen might hinder the primary activity. In such scenarios, placing an IMU

on neighboring fingers can be efficient. Our findings show that placing IMUs on a non-

gesturing finger may enable gesture detection at a comparable or even higher performance

rate.

5.2.5 Generalizability of Layouts across Participants

Next, we aim to understand the extent of inter-personal differences in recognition perfor-

mance. This is a crucial question because there can be inter-personal variations in the

way the microgestures are performed. If there is a large difference in classification results

across participants, the design tool that we describe in later Section 5.4 would need to

account for it while suggesting a sparse layout.

5.2.5.1 Method

A comprehensive Leave-one-person-out (LOPO) evaluation with 12 participants × 393,213

layouts = 4,718,556 models will approximately take 25 days of computation time on

our 40-core machine. To circumvent this problem, we first identified the best layout

according to the F1 score for a given count of IMUs on our 80:20 participants split from
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Figure 5.11: F1 score performance of six different gesture types possible with each finger
(+1 static) when the IMUs are placed on gesturing as well as non-gesuring fingers for three
representative Grasp variations (Grasping microgestures).

the combinatorial results obtained with the combined condition (Freehand+Grasping).

Subsequently, we used these best layouts and trained 204 models (12 participants × 17

best layouts for the IMU Counts) for a LOPO evaluation.

5.2.5.2 Results

Figure 5.12 depicts the results of the LOPO evaluation. We observe that the difference in

F1 score from our randomly selected 80:20 train-test split and any LOPO model is about

±6%. It is worth noting that most participants achieved higher performance than our

randomly chosen participants.

5.2.5.3 Implications

Despite the inter-personal variations in how the gestures are performed, our recognition

pipeline still scales well and achieves high recognition performance with user-independent

models. We observed only little variation in F1 scores across participants, which demon-

strates that model predictions generalize to data from new users.
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Figure 5.12: Comparison of the F1 score achieved on our randomly selected two participants
with leave-one-person-out. The blue horizontal line corresponds to the average F1 score across
17 IMUs for the previous 80:20 split, and the grey band shows the standard deviation in the
F1 score across all IMU counts. The vertical columns represent the average F1 score for each
participant, and the error bar represents the standard deviation for each participant from count
1 to 17 IMUs.

5.2.6 Grasp-Dependent v/s Grasp-Independent Models

In our combinatorial analysis, we trained grasp-independent classifiers by combining all

grasp variations. Here, we aim to investigate if these initial results can be further improved

if a subset of grasps is selected. This would be relevant for application cases that comprise

selected activities with a known set of grasps, or for systems that can identify the current

grasp, e.g., by using activity recognition.

5.2.6.1 Method

We classified all 12 grasp variations separately (grasp-dependent models) by using our

initial 80:20 split of participants’ data with 19 classes [(3 fingers × 6 gestures) + 1 static

hold]. To save on the computation time, we performed the full combinatorial evaluation of

grasp-dependent models until IMU count = 5. There were 12 grasp variations ×
5∑

r=1

17Cr

layouts = 112, 812 models.

5.2.6.2 Results

For 9 out of 12 grasp variations, the F1 score increased when the model is trained on a

specific activity. Grasps like Lateral-S (Spoon), Tip-S (Needle), Lateral-L (Paper) showed

an improvement in recognition of 20–30% compared to the grasp-independent model. In

contrast, grasps like Cylindrical-S (Knife) and Tip-L (Pen) did not show any increment,

which can be due to the object’s geometry. Specifically, on such grasp variations, the

fingers are tightly packed, hindering the finger movement while performing gestures.

94



0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5

F1
 s

co
re

IMU Count

Cylindrical S Cylindrical L

Palmar S Palmar L

Hook S Hook L

Lateral S Lateral L

Tip S Tip L

Spherical S Spherical L

Grasp Independent
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5.2.6.3 Implications

The performance tends to improve if the model is trained for a specific grasp variation.

Therefore, when a subset of grasp-variations are chosen that map to a specific context,

our results from the combinatorial analysis can further improve. This feature of selecting

grasps is also integrated in our later presented design tool for finding a sparse layout.

5.2.7 Summary of Findings

The key takeaways from the above in-depth analyses are:

• More is not always better : Saturation in classification performance is achieved after

a fixed count of IMUs as shown in Figure 5.6. In typical cases, a quite low number

of 3–4 IMUs suffices for an F1 score of about 90%.

• Possible to achieve gesture recognition via IMU on non-gesturing finger : Our findings

from placing IMUs on a non-gesturing finger in Section 5.2.4 opens up a new avenue

for microgesture detection in HCI by leveraging movement patterns caused by

complex hand bio-mechanics in non-instrumented fingers.

• Effect of grasp type: In our analysis of Grasping microgestures, we found the F1 score

pattern dissimilar across different grasp variations – due to the influence of grasps

on the finger pose and motions. This ultimately affects the spatial configuration of

an optimal layout.

• User-independent models: We found that a performance of 90% and above with

user-independent classification models. This demonstrates the viability of utilizing

IMU-based input in future consumer-grade systems.
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Given this multi-factorial design space that influences the classification performance,

providing an automated system to a designer will enable rapid design iterations and

decision making for optimal IMU placement. Inspired by these findings, we present a rapid

technique to identify sparse layouts and a GUI-based computational design tool in the

following sections.

5.3 SparseIMU: Method for Rapid Selection of Sparse

IMU Layouts

Training the models for all layouts of IMUs took about 50 hours (Freehand = 1:27:31,

Grasping = 22:41:52 and Freehand + Grasping = 26:20:10). Modifying the set of gestures

or objects requires re-training of the models, as a new setting can influence the importance

of specific IMUs. Additionally, if one wants to explore design variations, like comparing

different gesture sets or sets of objects, this results in a multiplicative increase of the

number of models that need to be trained and evaluated. This large computation time

makes an exploratory study of IMU layouts very slow if not impossible.

To overcome this issue, we propose a method referred to as SparseIMU. It uses a proxy

metric describing the importance of individual IMUs. As a requirement, this method

should be fast to compute and correlate well with the results obtained from training all

model layouts. Specifically, the proxy metric is used to derive what IMUs contribute most

to the classification. In this work, we study two such proxy metrics:

• Feature Importance, also called Mean Decrease in Impurity [163], calculates how well

a feature splits the trials into their corresponding classes. This is a natural choice

for Random Forests, as the same criterion is used to build the trees themselves.

Instead of training and evaluating separate models for each combination of IMUs,

this approach requires training only one Random Forest model that comprises all 17

IMUs. Then Feature Importance, calculated from this model, indicates how much

an individual feature is contributing. For each IMU, we use multiple features (mean,

variance, etc.). Therefore, we aggregate the features belonging to the same IMU

using summation to infer an individual IMU’s importance. Here, the IMU with

the highest importance score is essential for the classification, and the one with the

lowest score contributes the least in the classification.

• Permutation Importance is a posthoc interpretation metric to calculate the impor-

tance of a feature. Here, a model that comprises all IMUs is trained and evaluated on

the original dataset. For a specific feature, all the values in the test data are then ran-

domly permutated; the feature, therefore, no longer provides useful information. The

model is evaluated again on this corrupted dataset and the difference in performance
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between the original and the corrupted dataset is computed. The larger the drop

in performance, the more important is the feature [164]. This approach needs no

further training and only one additional evaluation for each feature. The importance

of an IMU is again calculated by summing the importances of its features.

Both proxy metrices provide an importance score for each IMU. Given a desired IMU

count k, one could simply choose the layout created from the top k IMUs, based on their

importance score. However, in practice, it is beneficial to expand the search space of

possible ”top” layouts. In particular, we search through all possible combinations of the

top t IMUs (based on importance) chosen k at a time (tCk). We choose a t such that

the total number of layouts possible with the top t IMUs (tCk) is at least 1% (or 10% if

k <= 3) of the total number of possible layouts for the given count (17Ck) and train all

those (tCk) models. For instance, if the desired IMU count is k = 5, we would choose t = 9,

since (9C5 > 0.01 × (17C5) and thus we would train 126 models. Additionally, modifying

this threshold of 1% allows for a user-defined trade-off between evaluation time and sparse

layout performance.

5.3.1 Validation of SparseIMU Method with the Combinatorial
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Figure 5.14: Comparison between the F1 Score of layouts from the maximum combinatorial
(see Fig. 5.6) and F1 score achieved by the layouts recommended from Feature and Permutation
Importance.

To benchmark the selections generated from the two proxy metrics (Feature and

Permutation Importance), we use the IMU layouts from our combinatorial results that

achieved the maximum F1 score in Section 5.2.2. To quantify the differences, we obtain a

Spearman’s correlation (ρ) between the F1 score from the max. combinatorial layout and

the layouts from the two metrics. Permutation Importance received ρ = 0.7785 for the

Freehand, 0.6617 for the Grasping, and 0.8864 for the combined condition (all p¡0.005). In

contrast, Feature Importance received considerably higher correlations, with ρ = 0.8630,

0.9380, and 0.9419 for the respective conditions (p¡0.005). The high correlation using
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Feature Importance is also visible in Figure 5.14, where the layouts consistently obtained

an F1 score closer to the best performance in the combinatorial results. Therefore, we use

this metric further to calculate the computation time.

5.3.1.1 Runtime
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Figure 5.15: Runtime comparison between SparseIMU method and the Combinatorial Search
for all three conditions: Freehand, Grasping, and Both Combined.

We now quantify the significant reduction of computation time required to select sparse

layouts with the proposed SparseIMU method using Feature Importance. Given the 323K

models needed to evaluate the entire combinatorial space, we used our institution’s cluster

system with a 40-core setup. Of note, this high-end configuration machine used in our

combinatorial results is not widely accessible. In contrast, we evaluate our rapid method’s

performance on a commodity laptop (8-core MacBook Air). As shown in Figure 5.15, the

time required to find the sparse layout by our method is significantly shorter, despite the

use of a commodity laptop. This reduction is possible due to the considerably smaller

number of model training required across each IMU count. For instance, if we were looking

for a layout with k = 5 IMUs out of n = 17 possible IMUs in the Freehand condition,

the time reduces from 3 mins on the compute cluster to 1 minute on a consumer-grade

laptop. Moreover, for Grasping Microgestures and Both Combined conditions, it reduces

from about 50 mins to 5 mins and from 1 hour to about 6 mins, respectively. While it

takes longer to find solutions for IMU counts 7-11, we note that the method still performs

significantly faster than the baseline. Moreover, we expect that layouts with this large

number of IMUs need to be rarely considered, since going beyond 3–4 IMUs will only lead

to a maximum increase of 4% in the F1 score, as we have shown above (see Figure 5.6).

Overall, the reduction in time achieved by our method on a commodity laptop offers strong

benefits for rapid iteration. In the next section, we use our method in a computational
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design tool.

5.4 Computational Design Tool for Rapid Selection

of Custom Sparse Layouts

Based on the SparseIMU method for selecting IMU layouts, we contribute a computational

design tool. It assists designers in the following tasks:

• Finding a sparse IMU layout that achieves high gesture recognition accuracy: Using

the designer’s specifications, the tool selects optimal designs in near real time and

indicates the expected recognition accuracy. This also allows the designer to quickly

obtain an initial understanding of how well a desired set of microgestures can be

recognized while the user is holding certain objects. The design tool assists designers

in locating fingers and precisely locating the segment of the finger where the IMU

should be placed.

• Exploring location alternatives: Considerations of ergonomic wearability or aspects

inherent to certain application cases may restrict the space where IMUs can be

deployed on the user’s hand. For instance, a smart ring with an in-built IMU can be

more suitably placed on the ring finger than the thumb. And an application case

involving dexterous manipulation of objects may benefit from IMUs placed on the

proximal phalanges, rather than close to the fingertips. The tool allows the designer

to restrict what locations can be augmented with IMUs, and to quickly explore

alternatives.

• Finding gestures that perform well: While it is understood that not all gestures are

compatible and will have a high performance for a specific set of objects and con-

straints, one key functionality of the design tool is to provide a visual representation

that depicts the performance of the individual gestures. This enables the designer to

quickly inspect which gestures perform well and which do not, and choose the most

compatible gestures that offer high recognition accuracy.

A screenshot of the design tool is shown in Figure 5.16. The designer first selects

Freehand and/or a set of Grasp variations(s) that the microgestures should be compatible

with. Next, she selects the set of microgestures that shall be recognized and indicates

which fingers are used for gesturing. Then, the designer can place additional constraints

for IMU placement. Entire fingers or individual finger segments, as well as the back of the

hand or wrist can be added or removed from the set of possible locations. As the last step,

the designer selects the desired number of IMUs, to trade-off between a minimal or more
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Figure 5.16: Screenshot of the computational design tool for designing sparse IMU layouts.
(a) User can select Freehand and/or multiple Grasp variations. (b) The tool automatically
recommends possible gesture combinations with three fingers. (c) Additional constraints with
respect to the placement of the IMUs can be specified. (d) The number of required IMUs can be
selected and button click generates the results in form of (e), a confusion matrix showing the
gesture-wise performance and an overall estimated F1 score, and (f), the location of the IMUs
present in the sparse IMU layout.
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complete instrumentation of the hand. With the click of a button, the IMU layout is then

selected.

To visually present the recognition accuracy of chosen gestures, the tool displays a

confusion matrix, along with location of the individual IMUs on the hand. If the designer

is not satisfied with the Tool’s recommendation, she can quickly explore options in an

iterative manner. For instance, she may fine-tune the set of gestures or explore alternative

locations for placing IMUs.

5.4.1 Implementation

It is noteworthy that our tool is different from a conventional lookup table which would

require 17.5 trillions of entries to cover the various combinations of IMUs, subsets of gestures

and grasp variations. Instead, by training only a few models using the SparseIMU method,

our tool supports every possible custom user input while minimizing the computational

complexity and storage. Furthermore, it allows the designer to rapidly iterate on multiple

custom input options. Specifically, the tool uses the microgestures dataset and the

SparseIMU method to identify the optimal IMU layout for a given set of requirements

and constraints. The tool creates new classification models with our initial 80:20 split of

train and test data. In addition to the required gestures, a Static hold is automatically

added as a negative class. For generating the confusion matrix and an estimated accuracy,

we use our test set. The Flask web framework for Python was used to create the tool’s

back-end. The front-end was styled using the Bootstrap toolkit, and JavaScript was used

for client-side scripting. The Snap.svg JavaScript library was used to render the selected

IMU layout.

5.4.2 Tool Evaluation

In addition to the validation of the SparseIMU method in section 5.3.1, we performed

another benchmarking to compare the tool’s output with the combinatorial results when

the designer applies constraints and opts for choosing a subset of grasp variation and

gestures. Therefore we created six example cases covering all three conditions. We

randomly selected grasp variations, gestures and added finger-wise placement constraints.

Informed by results from the first validation study, we chose two variations of IMU counts

that we consider particularly promising for applications: 3 IMUs for a good recognition

performance with very good wearability due to the low number of IMUs; and 5 IMUs for

further increased recognition performance with a level of wearability that is still acceptable

in many applications. We compared our tool’s estimation by creating new combinatorial

results for each case.
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# Condition Grasp Variations Gestures IMU Constraints Required 
IMU Count

Max. F1 score 
from Combinatorial 

F1 score 
from Tool

1 Freehand Freehand

Thumb Adduction, Middle Abduction, 
Middle Circumduction, Thumb Tapping, 
Index Flexion, Middle Tapping, Middle 
Extension, Thumb Extension, Index 
Circumduction

anywhere but Thumb 3 0.90 0.88

2 Freehand Freehand Middle Abduction, Thumb Tapping, 
Middle Extension, Middle Circumduction anywhere but Index 5 1.00 1.00

3 Grasping
Cylindrical-S, Cylindrical-
L, Hook-L, Palmar-S, 
Spherical-S, Tip-L

Middle Extension, Middle Abduction, 
Index Tapping, Index Adduction, Index 
Abduction, Middle Circumduction, Middle 
Flexion, Middle Tapping, Thumb 
Adduction

anywhere but Middle 3 0.81 0.79

4 Grasping Palmar-S, Tip-S Middle Adduction, Middle Flexion, Middle 
Circumduction, Middle Tapping anywhere but Ring 5 1.00 0.92

5 Freehand + Grasping

Freehand, Palmar-L, 
Hook-S, Cylindrical-S, 
Tip-L, Spherical-S, 
Spherical-L

Index Tapping, Thumb Adduction, Thumb 
Circumduction, Index Flexion, Middle 
Tapping, Thumb Abduction, Thumb 
Extension, Middle Extension, Thumb 
Tapping

anywhere but Pinky 3 0.95 0.95

6 Freehand + Grasping Freehand, Cylindrical-S, 
Palmar-L

Thumb Adduction, Index Circumduction, 
Middle Tapping, Thumb Tapping anywhere 5 1.00 1.00

Table 5.1: Comparison of maximum F1 score from Combinatorial Search and Tool Output
for six example cases. It includes the randomly selected grasp variations, gestures, user-defined
constraints, and required IMU count. For the classification, we also had a negative class (Static
hold) in each case.

5.4.2.1 Results

Table 5.1 lists the example cases along with the results. In five out of six cases, the

tool selected layouts that achieved an F1 score that was as high as the best performing

combinatorial result or a maximum of 2% lower. The largest difference of 8% occurred

in case 4, wherein the tool selected a layout with an F1 score of 0.92, while the best

performing combinatorial layout achieved a full 1.00. Noteworthy, the tool also performed

well in case 3, in which most of the randomly selected gestures involve the Middle finger

whereas the constraint was to exclude the Middle finger from placing IMUs. Despite this

demanding constraint, the tool successfully selected a layout that achieves performance

close to the layout found by exploring the entire combinatorial space.

5.5 Application Scenarios

In this section, we present a set of four scenarios, each illustrating a realistic application

of freehand and grasping microgestures with different design requirements and constraints.

We demonstrate how our computational design tool can assist designers in deciding between

various layouts, which is a non-trivial problem potentially requiring a trade-off, and can

help in refining IMU-based sensing solutions.
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5.5.1 Kitchen: Supporting Diverse Objects with Minimal Instru-

mentation

High-level Requirements

Objects/Grasps Diverse: bottle, knife, pestle, cup

Gestures Concise: adduction, abduction, tap

Designer-specified Constraints

Gesturing Fingers Free: any finger

Required IMU Count 1 IMU

Placement of IMUs Restricted: exclude fingers

Tool 
Generated

Constraint
Specific

Designer
Tweaked

estimated F1 score

0.994 0.768 0.826

a b c

Figure 5.17: Supporting diverse objects a) with minimal instrumentation b) in a smart kitchen
scenario requires a trade-off between F1 score and IMU postion c).

Smart kitchens, providing in-situ instructions while cooking, have been a popular

research area over the last decade [165]. We envision our computational design tool to

support a designer, Alice, in the development of an in-situ recipe manager that supports

information access using microgestures while cooking. For her first prototype, Alice wants

to enable microgestures on four objects commonly found in the kitchen: knife, bottle,

cup and pestle (cf., Fig. 5.17-a). For browsing a recipe, her application requires a small,

concise set of gestures: back (abduction), forward (adduction) and select (tap). Due to

frequent hand washing, the layout should be minimal (1 IMU) and restricted to the back

of the hand or wrist (cf., Fig. 5.17-b).

Tool Output: With the selection of objects and gestures (and no further constraints

imposed), the computational design tool suggests the thumb as common finger capable

of performing all desired gestures, and the thumb’s middle segment for IMU placement.

Being ‘most ideal’, this sensor location achieves an F1 score of 99.4% (cf., Figure 5.17-c).

However, Alice, excluded the fingers as sensor locations for sanitary reasons. This restrains

sensor placement to the back of the hand and wrist, which achieve an F1 score of 76.8%

and 56.6% respectively. For both, the confusion matrices reveal that the adduction gesture

has a lower score, likely due to the large distance between the IMU and the gesturing

finger. As a result, Alice settles on a trade-off between IMU location and available gestures.

To keep the IMU position on the back-of-the-hand, she updates her design to include only

tap and abduction gestures, increasing F1 score to 82.6%.
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5.5.2 On-the-Go Interaction

5.5.2.1 Sensor Placement on Non-Gesturing Finger

As voice user interfaces are oftentimes prone to false activation [166], wake-gestures are

an attractive remedy [114, 167, 168]. Bob aims to explore wake-gestures that work in

on-the-go scenarios where both hands are occupied, e.g., while carrying two bags or a

box (cf., Fig. 5.18-a). Furthermore, he intends to leverage an existing smart ring that

he intends to ‘hack’ to access its IMU data. It does not matter which finger performs

the gesture. However, ideally, the ring would keep its current position: worn on the ring

finger’s proximal segment.

High-level Requirements

Objects/Grasps Concise: bag, box

Gestures Minimal: circle

Designer-specified Constraints

Gesturing Fingers Free: any finger

Required IMU Count 1 IMU

Placement of IMUs Pre-defined: fixed placement

Thumb
Gesture

Index
Gesture

Middle
Gesture

estimated F1 score

0.822 0.873 0.975

a b c

Figure 5.18: An on-the-go scenario a) with pre-defined sensor placement on a non-gesturing
finger b) leverages co-activation c).

Tool Output: Bob starts by evaluating the circle gesture performed with the thumb

and the IMU present on the ring finger. The tool outputs an F1 score estimate of 82.2%.

As wake-gestures should be resilient to false activation, Bob is not satisfied yet and explores

further possibilities. As the position of the IMU is non-negotiable, he includes index and

middle as gesturing fingers which achieve an F1 score of 87.3% and 97.5% respectively. The

middle finger’s promising performance (97.5%) is explained with the higher co-activation

sensed on the ring finger (where the sensor is worn). Here, the computational design

Tool allowed Bob to iteratively explore the gesture space and finally arrive at a tailored

solution.

5.5.2.2 Finding Unambiguous Combination of Gestures

Listening to music while running is a typical combination, but controlling the music app

on a smartphone or smartwatch’s touchscreen requires Taylor, a frequent runner, to take

unplanned breaks as shown in Figure 5.19-a. Conventionally, she needs to pause her run

for performing the desired command (switch tracks or play/pause). These frequent and

unnecessary halts for simple inputs affect her lap timings. She would prefer to use her
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middle finger for gesturing since she keeps switching the index and thumb poses in different

fist forms while running. Her requirements are only for three gestures, including Tap,

Flexion, and Extension. Also, due to vigorous hand movements and to keep the IMU

firmly attached to her finger, she chooses to place the IMU ring in the proximal segment,

which can be on any finger (see Figure 5.19-b).

High-level Requirements

Objects/Grasps Concise: freehand

Gestures Minimal: tap, flexion, extension

Designer-specified Constraints

Gesturing Fingers Restricted: only middle

Required IMU Count 1 IMU

Placement of IMUs Restricted: only proximal segment

Tool 
Generated

Designer
Tweaked

estimated F1 score

0.872 0.949

a b c

Figure 5.19: Supporting Freehand a) with minimal but clearly distinguishable gesture set b) in
a running scenario with a restricted placement choice c).

Tool Output: Taylor started by opting for Freehand gesture and then made her

gesture choices, and selected all fingers’ proximal segment. As one’s intuition, the tool

suggested placing the IMU on the Middle Finger’s proximal segment. It predicts an

estimated score of 87.2%. By analyzing the confusion matrix, Taylor found out Flexion

and Tap gestures get confused and subsequently decided to find the performance of other

gestures. Using the rapid evaluation provided by the tool, she found out that replacing

Flexion with Abduction solves this issue, and an estimated F1 score of 95% is possible

(see Figure 5.19-c). Here, the tool was beneficial in finding an alternative gesture that can

be detected at a higher performance while preserving all the other requirements.

5.5.3 VR Controller: Diverse Gestures with Minimal IMUs

Exploring diverse gestural inputs for VR [169] has been a popular area for experimentation

in HCI and media arts. Dan plans a VR media arts installation which uses microges-

tures on a hand-held VR controller to contrast private and public interactions by subtly

expanding the controller’s range of functions. Thus, as demonstrated by [170], he aims

for a miniaturized device equipped with 3–4 IMUs in combination of a commodity VR

controller. He wants to avoid placing IMUs on the index finger which operates the

VR contoller’s push button and also not use it as a gesturing finger. To facilitate play-

ful public or private interactions, he hopes to support as many different gestures as possible.
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High-level Requirements

Objects/Grasps Minimal/Transferred: VR controller

Gestures Extensive: as many as possible

Designer-specified Constraints

Gesturing Fingers Restricted: exclude index

Required IMU Count 3-4 IMUs

Placement of IMUs Restricted: exclude index

a b c

IMU 
Count = 14

IMU
Count = 3

Designer
Tweaked

estimated F1 score

0.802 0.805 0.843

Figure 5.20: Minimal setup with 3–4 IMUs a) with maximum diverse set of gestures b) finding
the balance between gestures and accuracy.

Tool Output: Dan explores the solution space for all possible IMU locations excluding

the index finger (14 IMUs total). The tool yields an F1 score of 80.2% if 12 gestures are

supported. Dan iteratively decreases the IMU count (while keeping the amount of gestures

to 12) inspecting performance after each decrement. He identifies a saturation in F1 score

at 3 IMUs (80.5%), which illustrates that a higher number of IMUs does not necessarily

imply better performance (cf., Fig. 5.20-c). After further tweaking their configuration,

Dan settles on a 3-IMU configuration and a set of 10 gestures. This choice is a trade-off

allowing for a relatively high amount of gestures while still achieving an F1 score of 84.3%.

As Dan aims for a rather playful, explorative VR installation, he considers this level of

score acceptable. This highlights how the choice of a final layout depends on the weight

the designer assigns to the different parameters (e.g., amount of gestures vs. performance)

which in turn strongly relate to the specific application (e.g., playful vs. safety-critical

purposes).

5.5.4 Electronics Workshop: Microgestures while Performing

High-Precision Tasks

Carla seeks to explore how users can make use of microgestures to access additional

instructions during high-precision tasks such as soldering. She envisions tools such as a

soldering iron, soldering lead, or a screwdriver (cf., Fig. 5.21-a). As these tools are not

available in our dataset, she uses our computational design tool to make an informed

best guess by determining a set of initial layouts to elaborate on. Here, our Tool draws

strength from the similarity in grasp types: the soldering iron (not present in the dataset) is

typically held in a fashion similar to the pen (present in the dataset); holding fine soldering

lead or wire in place resembles holding a needle, and holding a screwdriver demonstrates

a similar (cylindrical) grasp like holding a knife. Carla envisions four gestures: forward,

backward, select, and circle which she intends to use to browse an instruction manual.

She furthermore excludes thumb and index finger–both as gesturing fingers and for IMU
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placement–to not interfere with the high-precision soldering task, and constrains the

number of IMUs to 2 or 3 (cf., Fig. 5.21-b).

High-level Requirements

Objects/Grasps Transferred: pen, needle, knife

Gestures Concise: adduction, abduction, tap, circle

Designer-specified Constraints

Gesturing Fingers Restricted: exclude thumb and index

Required IMU Count 2-3 IMUs

Placement of IMUs Restricted: exclude thumb and index

IMU Count = 1 Count = 2 Count = 3

estimated F1 score
0.866

0.813 0.799

a b c

~Prox
Segment

~Midd
Segment

Designer 
Tweaked

0.853 0.887

0.934

Figure 5.21: Transfer of grasps a) with restrictions on Thumb and Index b) finding the optimal
finger segment c).

Tool Output: The computational design tool suggests placing the IMUs on the middle

finger which achieves a competitive F1 score of 88.7% when 3 IMUs are used. Yet, at closer

inspection, the tool also reveals that accuracy varies depending on the finger segment on

which the IMU is placed, ranging from 80% to 88%. Hence, the choice of finger segment

is crucial. Moreover, the tool shows that there is only 2% gain in score from placing 3

IMUs on the middle and pinky finger (88.7%), compared to only one IMU on its middle

segment. Thus, a single IMU is sufficient to cover all gestures Carla had planned for her

scenario. Further exploration shows that an increase in accuracy can be obtained for the

1-IMU layout to 93.4% by removing the adduction gesture (cf. Fig. 5.21-c). As follow up,

Carla conducts a small-scale data collection using the 1-IMU layout recommended by the

tool. Here, the tool provided a best guess in terms of IMU placement and gesture choice

which served as a strong foundation for further iterations.

5.6 Comparing the Tool’s Output with Live Gesture

Recognition

To further demonstrate the tool’s practical usefulness and generalizability to real-world

applications, we collected another dataset with different hardware configurations and

participants. This section compares the predicated F1 score from the computational tool

with another system deployed for live gesture recognition.

5.6.1 Apparatus

With a focus on mobility and wearability, we developed a working wireless system that

consists of a 9-Axis IMU (MPU9250, InvenSense Inc., CA, USA) and a Bluetooth module.
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Bluetooth-enabled 
IMU device Scenario 7.1 Scenario 7.2.1 Scenario 7.2.2 Live gesture recognition

a b c

Figure 5.22: Minimal wireless hardware with battery a); scenarios involving multiple objects
and freehand b); live classification of gestures c).

As with previous work for gesture detection with a low-power wearable device [171], we

sampled the accelerometer at 35 Hz (lower than in our microgestures dataset). Similarly,

gyroscope and magnetometer were sampled at 35 Hz. For powering the device, we used a

2000mAh (DTP634169) lithium polymer battery. We also created a 3D printed casing

with hooks to attach velcro straps so that the device can be easily worn on different fingers

and varied hand sizes. An additional velcro strap and adhesive tape were used to affix the

battery to the arm such that it would not interfere with hand actions. We created two

such devices (as shown in Figure 5.22-a) and synchronized them to enable data collection

from multiple hand segments simultaneously. Raw data from the devices is wirelessly

streamed over Bluetooth to a PC for live classification.

5.6.2 Scenarios

To keep the data collection feasible, we selected three scenarios from Section 5.5.1, 5.5.2.1

and 5.5.2.2. These represent multiple settings with gestures on diverse objects, on-the-go

interaction with sensor placement on the non-gesturing finger, and finding an unambiguous

combination of gestures for freehand input, as shown in Figure 5.22-b.

5.6.3 Participants

We recruited 6 right-handed participants (3M, 3F, mean age: 22.2; SD: 2.5) with an

average hand sizes from Wrist to the tip of Thumb = 132mm (SD:9mm), Index =

168mm (SD:10mm), Middle = 175mm (SD:12mm), Ring = 163mm (SD:10mm), Pinky =

144mm (SD:10mm). It is noteworthy that all 6 participants were different from those who

participated in creating the microgestures dataset (section 5.1.4).
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5.6.4 Task and Procedure

We used the same procedure as described in Section 5.1.5 i.e. we counterbalanced the

two conditions (Freehand and Grasping) and further counterbalanced the order of objects

in each scenario. Once the object or freehand condition was selected, we presented the

gesture/non-gesture states in a randomized order. We developed a custom software tool

using Flask framework in Python to label the trials that the experimenter controlled

during data collection. Overall, we recorded 5 trials for each gesture and Static hold for

a negative class, totaling 870 trials (145 trials per participant), comprising 10 unique

gestures and static hold classes on 7 different object/grasp types.

To evaluate a potential bias resulting from orientation, the data collection for this

experiment was performed in a room that was different from the microgestures dataset.

Additionally, the orientation of the participants was rotated by 90 degrees left from their

original orientation in the microgestures dataset. The sitting/standing posture and the

start and stop for labeling were similar for all scenarios as in the microgestures dataset,

except for the scenario with freehand gestures (Figure 5.22-c). Here, we kept the posture

to standing as defined in the scenario and marked the start and stop of gestures when

the arm started swaying upwards from the standstill posture and returned to the initial

state. Hence, the assumption is that even though coarse hand movement is involved, IMU

placement is still crucial for detecting fine finger movements (gestures). The complete

data collection for each participant took about 45 minutes.

5.6.5 Feature Extraction and Classification Model

In order to perform a systematic comparison, we extracted the same six features as used in

the analyses above and in the computational design tool. These features are mean, median,

minimum, standard deviation, and variance calculated from each of the 9-axis of the IMU.

It is important to note that live classification requires a time window of streamed data as

opposed to our tool in which we classified the entire trial. Therefore, the features were

extracted on a window size of 90 and an overlap of 70 frames - only for the data collected

in this study. The tool configurations remain untouched, which extracts features over

the entire trial. We also used the same classifier with default parameters as used in our

computational tool, i.e., Random Forest (RF) with max depth = 30. We trained a separate

grasp-independent multiclass model (not encoding grasp/object information in the class

labels but only gestures) for each scenario and IMU placement. Since our participant count

is lower than in the microgestures dataset, in addition to the user-independent models with

leave-one-person-out cross validation training and testing, we also created user-dependent

models and evaluated with leave-one-trial-out cross validation technique.
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5.6.6 Results

Scenario 7.1
Supporting Diverse Objects with Minimal 

Instrumentation

Scenario 7.2.1
Sensor Placement on Non-Gesturing Finger

Scenario 7.2.2
Finding Unambiguous 

Combination of Gestures

Objects/Grasps bottle, knife, pestle, cup bag, box freehand

Gestures

Thumb 
Adduction, 

Thumb 
Abduction, 
Thumb Tap

Thumb 
Adduction, 

Thumb 
Abduction, 
Thumb Tap

Thumb 
Abduction, 
Thumb Tap

Thumb Circle Index Circle Middle Circle

Middle Tap, 
Middle Flexion, 

Middle 
Extension

Middle Tap, 
Middle 

Abduction, 
Middle 

Extension

IMU placement

Computational Design 
Tool

100%
I

77%
III

83%
II

84%
III

90%
II

100%
I

92%
II

100%
I

0.994 0.768 0.826 0.822 0.873 0.975 0.872 0.949

Live 
Classification 

User-independent
100%
I

67%
III

79%
II

93%
III

98%
II

100%
I

95%
II

100%
I

0.860 0.577 0.682 0.903 0.953 0.973 0.615 0.644

User-dependent
100%
I

95%
III

98%
II

98%
III

99%
II

100%
I

96%
II

100%
I

0.902 0.857 0.886 0.949 0.959 0.969 0.820 0.857

Table 5.2: Comparison of F1 scores from the computational design tool output and live
classification. For each of the three scenarios, the object/grasp information, gesture, and
location of IMU placement are described. We also included a negative class (Static hold) wrt.
objects/grasps. For each scenario, the normalized F1 score of a configuration is calculated by
normalizing it to the highest achieved F1 score. For completeness, we also report the absolute F1
score obtained for each configuration below the ranking. The performance ranking is denoted in
roman characters.

Table 5.2 shows the comparison between the estimated F1 score from the computational

tool and the performance achieved in the live classification. To understand the relative

performance across configurations within a scenario, we calculate their normalized F1

score. The normalized F1 score is calculated by normalizing the F1 score of a given

configuration with respect to the highest-performing configuration within this scenario.

The table shows the normalized F1 scores (represented as percentages) along with absolute

values for completeness. We observed that even with different hardware and participants,

the results for live recognition are in congruence with the tool’s prediction. Specifically,

the tool correctly predicts the performance ranking of configurations, and the normalized

F1 scores across configurations matches reasonably closely. Of course, this does not hold

true for the absolute values, which strongly depend on the (largely differing) settings

of a configuration (live classifier, different hardware, model, train trials). However, the

normalized F1 score gives an indication of what changes (improvement or deterioration) to

expect when switching from one configuration to a different one. It is noteworthy that our

results are consistent for all three scenarios with user-dependent as well as independent
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models, demonstrating the generalizability of our method.

5.7 Discussion and Limitations

While this work takes a significant first step toward the rapid dense-to-sparse exploration

of IMU layouts for finger microgestures, we mention our work’s strengths and limitations

below:

5.7.1 Grasps, Objects, and Gestures in and beyond the Micro-

gestures dataset

When constructing our dataset, we leveraged prior work on grasp types [15] to build six

categories and selected representative small and large objects as well as corresponding

realistic actions (cf., Figure 5.3). While exhaustively covering all conceivable objects for

each grasp type is impossible, we anticipate generalizability for objects not present in the

dataset. A few characteristics of finger movements directly depend on the grasp type and

hence generalize for objects beyond the ones present in the dataset, such as the feasibility

of gestures with a specific finger, and the co-activation of the non-gesturing finger. There

are few other characteristics of object manipulation which might not generalize and which

future work needs to address. For example, two objects may afford the same grasp type

but fulfill different purposes (e.g., pen vs. soldering iron) and require different movements

(fluent writing vs. a steady hold for soldering). Our computational design tool incorporates

this limitation by assuming the user would briefly pause the primary activity while keeping

the object in hand.

5.7.2 Computing, Refining, and Transferring Layout Suggestions

We anticipate that the tool’s layout suggestions can serve as a valuable starting point

to quickly reduce the design space and for further improvement of performance in an

end-to-end working system. Additional techniques such as collecting more training data

to include additional variations, adding more features, performing hyperparameter tuning

to tailor the classifier’s behavior to the specific dataset, creating an ensemble of classifiers,

and optimizing the hardware’s sample rate to improve the recognition rate can be applied,

if desired. Our findings show that grasp-dependent models may further improve the

classification performance. This also suggests that the combination of target Freehand

and/or Grasp variations affects the model’s performance, where our computational design

tool can be useful in rapid testing and iterations to find the balance between users’ choice

and classification performance.
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While we performed user-independent evaluations in our analysis, in our initial tests, we

found the performance of user-dependent models is higher with the same model architecture.

With the advances in deep learning models and their interpretability methods, we believe

a more sophisticated model pipeline can be constructed based on our analysis results. This

would also help researchers in benchmarking different techniques to select sparse layouts.

5.8 Conclusion

In this work, we presented the first computational design approach for realizing sparse IMU

layouts to recognize microgestures effectively – with hands-free and while holding everyday

object conditions. Our SparseIMU method uses a customized version of a well-known ML

metric (Feature Importance) for rapidly selecting sparse IMU layouts. We also contributed

a computational design tool that selects sparse IMU layouts based on higher-level inputs

(objects, gestures) and constraints (e.g., choice of placement) specified by the designer. We

empirically validated the accuracy of the IMU layouts selected by our design tool with the

combinatorial results obtained by training 393, 213 models. Selecting a sparse layout with

our SparseIMU method is significantly faster than exploring the complete combinatorial

space and shows a high quantitative agreement. We also contribute the first microgestures

dataset, consisting of 18 gestures and 3 non-gesture states performed with freehand and

12 objects covering all the six grasp types. Using a dense network of 17 synchronized

IMUs placed all over the dominant hand, we collected the data from 12 participants. Our

dataset comprises fully annotated dense IMU data consisting of 13,860 trials (3 million

frames). Through our dataset, we believe new insights can be derived not only for HCI

research but might also be helpful for an array of other fields, including machine learning,

optimization and bio-mechanics.

Our analysis revealed three major findings: i) With only 3–4 IMUs, an F1 score of about

90% can be achieved in a challenging classification task with 18 classes of Freehand and

Grasping microgestures, ii) placing an IMU on a different segment on the same finger may

significantly affect the classification performance, and iii) we demonstrated the feasibility

of detecting gestures with an IMU placed on a non-gesturing finger. Finally, through a set

of systematically designed application cases and a user study, we demonstrate how our

computational design tool enables designers to employ a rapid and iterative design process

for realizing microgestures for diverse scenarios across multiple objects. Our contributions

in this thesis take advantage of fingers’ dexterity and uncover the sensing potential of

IMUs towards bringing computing at user’s fingertips – practically everywhere and always.
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CHAPTER 6

Conclusions and Future Work

Human beings now frequently need to interact with computers in their professional tasks

as well as leisure activities. This need has steadily grown with the proliferation of mobile

devices. However, current computing devices include touch screens, buttons, or controllers,

which require at least one hand free for input. As a result, interaction with the digital

world is rendered challenging when the hands are occupied with other everyday tasks.

Therefore, alternative input modalities are required to support interaction during other

hands-busy scenarios. These practical input techniques must minimise recognition errors,

but they must not be so restrictive as to hinder productivity. Instead of adding a “touch

screen” to the held objects, this thesis attempts to meet this need by investigating ways to

design and implement seamless gestures for always-available input. In particular, I address

the three fundamental research questions as outlined in the introduction:

1. How does the multitude of grasp types, and object geometries affect users’ choice of

microgestures?

2. How to avoid false activations in gestural input while handling everyday objects?

3. What sensor locations on the hand provide effective recognition with minimal

instrumentation?

This last chapter summarizes the contributions to the above research questions and

concludes by providing directions for future research.

6.0.1 Insights into how end-users perform gestures when holding

an object

In Chapter 3, I conducted the first study to answer the essential question of how grasps

and object geometries affect the design space of microgestures performed on handheld

113



objects under the interactional constraints caused by holding a physical object in one’s

hand. In particular, using a taxonomy of six different grasps and two object sizes, I selected

12 representative handheld objects from various domains. The study employed the user

elicitation method to analyze over 2,400 user-generated microgestures for ten referents

on all objects, which allowed for identifying user agreement, mental models, and gesture

preferences. From this data, I characterize users’ preferred type of gestures when hands

are busy. I also show that these gestures mainly depend on the referent rather than the

grasp or object, but that the choice of fingers and gesture location is strongly influenced

by the size and grasp type of the object. Finally, using statistical clustering, I derive a

new class of gestures called Grasping Microgestures, which prescribes a starting point for

consolidated gesture set that is compatible with diverse objects geometries.

6.0.2 Simple, robust and scalable interaction technique

Many existing gesture design approaches are only concerned with ergonomics or technical

feasibility. The issue of false activation, though severe, has been a long-standing and

most largely unaddressed concern even in massively deployed systems [172]. To address

the problem of false activation during input while grasping everyday objects, I designed

and validated a novel concept called SoloFinger in Chapter 4. The main finding of

this work is that single finger movements that are rapid, easy, and elegant to perform

can indeed function as robust microgestures while holding objects. I demonstrate that

this holds true for diverse grasps, object geometries, and everyday actions. Specifically,

SoloFinger leverages the insight that fingers tend either to be static or to have multiple

fingers move concurrently when holding and manipulating objects. Consequently, a

single finger’s extensive yet comfortable movement while other fingers remain idle stands

out from everyday hand-object motions. Through this technique, designers can create

robust gestures with everyday objects without affecting their intrinsic properties. To

methodologically validate this idea in the context of hand-object manipulations and gesture

design, I conducted an extensive data collection study. I performed a series of data-driven

analyses, including the concept’s validation with a pre-existing dataset. Additionally, I

implemented a proof-of-concept system a commercially available VR glove and a multi-

class classification of seven SoloFinger gestures with the thumb, index, or middle finger,

achieving an accuracy of 86% with a very low number of false activations (17 out of 800

trials). When the held object is known, the accuracy increases to 89%, with no false

activations in the collected dataset.
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6.0.3 Rapid computational method for selecting sparse sensor

layouts

Inertial Measurement Unit (IMU) sensors have shown promising results for gesture recog-

nition in an ergonomic and lightweight ring form factor. Aside from their sensitivity to

subtle movements, they do not face occlusion problems. However, the IMU layout, i.e.,

where IMUs are placed on the hand and fingers, is very important for detecting gestures

accurately [89]. IMU placement is subject to a multi-factorial design space that includes

freehand or grasping conditions, diverse object geometries, different fingers, various ges-

tures, and additional user-defined constraints. Finding an optimal layout manually while

considering these factors is extremely time-consuming and might result in layouts that

are far less than optimal. The SparseIMU method, presented in Chapter 5, takes the

first step toward using computational methods to rapidly select minimal IMU layouts for

gestural input with IMU sensing. In essence, SparseIMU utilizes a modified version of

feature importance to select layouts rapidly. With a dense network of 17 IMUs placed on

the hand, I collected data from multiple microgestures in freehand and grasping conditions.

Our empirical analyses included evaluating the entire combinatorial space of 393K IMU

layouts and comparing various IMU layouts. I also developed a GUI-based tool utilizing

the SparseIMU method for designers of gesture recognition systems to make well-informed

and rapid decisions. Last but not least, another user evaluation with a separate IMU

hardware confirms that the tool’s predictions and performance achieved in live gesture

recognition are congruent.

6.1 Future Work

In keeping with the original Mark Weiser’s vision of ubiquitous computing [173], I envision

a future where the user takes advantage of fingers’ dexterity to enable computing at the

right time and place. While this thesis focused on addressing three major challenges to

enable always-available input, the following interdisciplinary endeavors can further unlock

new user experiences in varied domains like healthcare, automation, construction, smart

homes, and many more.

6.1.1 Expressive, domain-specific gestures and rethinking

object designs

The extensively studied gestures in this thesis mainly consist of taps and swipes. With the

idea of adding expressivity, future work can create new expressive gestures like squeezing

or moving the object in a particular manner that resonate well with the object in hand.
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Moreover, the gesture designs presented in this thesis with Grasping and SoloFinger

microgestures, require holding an object in a static position. It is important to note,

however, that the analysis of false activation did involve object manipulation in Chapter 4.

Future work should explore the effect of simultaneously performing a gesture while

manipulating an object, such as performing an input gesture while hammering. In this

dissertation, I primarily focused on the grasp types and then included multiple variations

of everyday objects (over 50 entities) for analysis. With grasp types as a vantage point,

our findings are more generalizable and could be applied to new objects, presenting

several unexplored opportunities to enable gestures while holding objects. While there

can be so many possibilities, future work can take inspiration from the factors described

in Wimmer [174] GRASP model and evaluate these gestures in specific scenarios. For

instance, adding interactivity to the assistive equipment (e.g., walking cane), building

new input techniques where the Artificial Intelligence (AI)-enabled modalities (such as

voice assistants) can cooperate to make the best use of the object in hand, and increasing

the number of default functions on controllers in immersive environments like virtual or

augmented reality. Most often, the design of everyday objects remains the same over time,

and users have no other option but to accept the design flaws. Future designers could

augment/alter existing objects to integrate gestures ergonomically and combine other

object properties to reduce the overhead of carrying multiple things simultaneously.

6.1.2 Capturing diverse and long-term datasets

The two large datasets released, especially in combination with the activity data in Chapter

5, can be used in future work for Transfer Learning [175] as both gesture and non-gesture

conditions are present. Moreover, future work may choose to augment the released datasets

with additional objects and activities or gestures. For example, there is potential to expand

into rhythmic gestures incorporating longer duration or repetitive gestures (e.g., double

taps), which indicate benefits such as robust wake gestures or hot words [176]. It will

also be relevant to study objects with advanced material properties, such as pronounced

surface texture, friction, or deformability. For feasibility reasons, the Microgestures dataset

contains gestures performed by Thumb, Index, and Middle fingers, but future work should

investigate gestures performed by other fingers. In addition, the dataset was collected

from participants who were right-handed and young. Future work may study how this

data generalizes to other populations such as the elderly (potentially limited range of

motion or tremor) or children (smaller hands). For creating the datasets, I have carefully

selected different object geometries that afford different orientations of hand and fingers

to reduce potential dataset bias. For instance, the thumb faces upwards while holding

the book, but it is sideways while holding the bottle. As a next step, future work may

use data augmentation techniques to arbitrary facing (or even orientation) of the head by
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adding randomized orientation offsets to the raw data [177].

In Chapter 4, I tested false positives on an extensive dataset covering a large set of

grasps, objects, and actions. However, the dataset is subject to limitations. The reason

for using this dataset rather than a field recording was that it offered precise and realistic

hand data with a broad range of hand-object actions. Given the technical limitations of

recording such highly articulate actions, this would likely be challenging in a field recording.

Specifically, the dataset contains focused activities, which I worked on as a first step to

exploring our concept’s potential. However, in addition to the focused activities, different

idle phases may occur in a real-world interaction. Idle phases might bring additional

challenges for classification, for instance, during change of hands, multi-tasking, nervous

tapping, or when the user is fiddling with an object. These should be investigated in

future work by capturing longer-term in-the-wild data.

6.1.3 Interpretable, low-resource recognition models

Most state-of-the-art gesture recognition systems are opaque and do not provide reasoning

when the classification succeeds or fails. The recognition systems should be designed

in a way to assist engineers in understanding the recognition failures and fine-tune

models for failure cases. This knowledge will help in the mainstream adoption of gesture

recognition systems. In this dissertation, I have started to address this problem by creating

interpretable systems in SoloFinger 4, wherein I used model interpretability to recognize

the reasons for false activations. Since I used one set of thresholds for all users, it will

need to be investigated whether this generalizes to children or users with very large hands.

Future work could normalize thresholds for hand size or finger length and use them in

deployment.

In addition, learning-based recognition approaches require a lot of training data that

is difficult to collect. Data collection and labeling is a well-known problem in HCI and

Machine Learning, but the manually-labeled frames in the released datasets of this thesis

can provide a quality source for auto-labeling of new data, reducing the tedious manual

efforts of data labeling. Finally, it is worthwhile mentioning that the datasets offer a

starting point to enable always-available input using IMUs, but it would be fruitful if

future works investigate effortless methods for data collection and labeling in the wild.

6.1.4 Computational tools to assist designers and engineers

Currently, the computational tool in Chapter 5 suggests sensor placement based on gestures

and finger choices. However, future work could work conversely as well, i.e., given the

placement choice of sensors and the count, the tool will recommend the best gestures that

can be detected. The current layout selections are measured by classification performance,
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but other factors like the required amount of training data, battery performance, hardware

cost or dimensions of the sensing device could be integrated into future versions of the

tool. It is also possible that the suggestions prove useful beyond their application with

IMU data; other approaches making use of high-dimensional data from different sensors

(e.g., EMG/FSR [12, 74, 178]) could potentially expand upon the suggested layouts.

The presented computational design tool’s output can also be seen not as a final choice,

but as a ‘best guess’ for further refinement. For instance, if a layout with multiple IMUs

is selected, an inverse kinematics (IK) model could be applied post-hoc to the set of

suggested layouts to further leverage the inherent co-activation between the fingers and

refine the final layout. Analogously, the current version of the tool comprises F1 score as

evaluation criteria, but does not cover other metrics. In cases where robustness against

false activation is a key design concern, individually showing precision/recall scores might

be beneficial. Likewise, while the tool’s design is relatively easy to use, visually depicting

the gestures to instruct new users and offering strategies for an alternative representation

of the confusion matrix and the F1 score can aid understanding of the classification results.

Inspired by Ashbrook et al. [179] and Kohlsdorf et al. [60], future versions of the tool

may also incorporate techniques to estimate the chances of false positives for each gesture

by comparing the selected gestures to a large corpus of everyday activity data. The

benefits of this feature will build trust in the adoption of gesture recognition in real-world

deployments.

In summary, the contributions in this thesis have pushed the boundaries for providing

always-available input. The findings will serve as a conceptual and technical foundation

that can be used to realize the vision of access to computers - wherever and whenever

users need them, without interfering with their everyday lives.
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