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Figure 1. This paper presents performance and ergonomics indices for six typical touchscreen surfaces. Motion capture-based biomechanical simulation
was used to understand differences in speed, accuracy, posture, energy expenditure, and muscle group differences. This figure shows the median
postures recorded in the study.

ABSTRACT
Although different types of touch surfaces have gained exten-
sive attention in HCI, this is the first work to directly compare
them for two critical factors: performance and ergonomics.
Our data come from a pointing task (N=40) carried out on
five common touch surface types: public display (large, ver-
tical, standing), tabletop (large, horizontal, seated), laptop
(medium, adjustably tilted, seated), tablet (seated, in hand),
and smartphone (single- and two-handed input). Ergonomics
indices were calculated from biomechanical simulations of
motion capture data combined with recordings of external
forces. We provide an extensive dataset for researchers and
report the first analyses of similarities and differences that are
attributable to the different postures and movement ranges.
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INTRODUCTION
This paper addresses the fact that we are using a growing va-
riety of touch devices in daily life. Smartphones and tablets
have reached the status of a standard input device, and table-
tops and public displays are receiving increasing attention.

We investigate the performance and ergonomics factors of
common touch surfaces. While these have been studied in
the past (e.g., [3, 20, 21, 9]), the studies have considered a
single surface type at a time, such as tabletops [14], vertical
displays [24], tilted displays [13], or handheld devices [20].
It has been impossible to form an overview of how the sur-
face types differ in interaction. First, earlier studies did not
compare surface types. Second, previous work has typically
studied performance or ergonomics in isolation. Third, there
are critical differences in experimental tasks, metrics, partic-
ipants, devices, and so on, that prevent a direct comparison
across studies.

This paper is the first in HCI to present results from a di-
rect experimental comparison of common touch surface types
in a target selection task. The within-subjects design sheds
light on important differences and similarities among the sur-
faces. We see two benefits. First, the results illuminate the
strengths and weaknesses of each surface as well as trade-
offs among them. Our study permits looking at trade-offs in
throughput, postures, and the expected fatigue in sustained
interaction. Moreover, recommendations can be derived for
better ergonomics and performance. In the past, poor er-
gonomics has often been identified anecdotally as a limiting
factor for the prolonged use of surfaces. This is exemplified
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by the “touch thumb” and the “gorilla arm”—now popular
metaphors of fatigue caused by touch interactions. The re-
sults of our study allow comparing such effects across sur-
faces.

Our point of departure is the assumption that differences
among touch surfaces in performance and ergonomics can
be attributed to biomechanical causes. Even though the in-
put device is seemingly the same, touch surfaces can involve
very different postures and movements. On the one hand,
this increases tremendously the possibilities for using touch
surfaces for input. On the other hand, different positions re-
quire different body postures, and the consequences of vary-
ing body posture on input are less well known. The implica-
tions of postural flexibility deserve attention, as it is a distin-
guishing feature of touch surfaces versus desktop interaction.
Our study addresses natural postures for five surface types
commonly used and researched in HCI:

1. public display: large area, vertically positioned, used
while standing

2. tabletop: large area, horizontally positioned, used when
seated

3. laptop: medium area, adjustable tilted position, used when
seated

4. tablet: medium area, handheld
5. smartphone: small area, used with one or two hands

These align with the prototypical postures in previous HCI
studies.

Our methodology builds on recent advances in unobtrusive
data-driven ergonomics analysis. We use optical motion cap-
ture and biomechanical simulation to compute several in-
dices of ergonomics. Biomechanical simulation describes
motion capture data as velocities and angles of limbs, forces
and moments at joints, and muscle activations. The use of
biomechanical simulation not only provides a very rich de-
scription of biomechanical events in the body, it also over-
comes challenges that the traditional ergonomics instruments
have, such as goniometers and surface-EMG. Recently, the
predictions of mocap-based biomechanical simulation were
validated against EMG data [1]. The results were positive
for all participants, highlighting that the correlation is higher
for aimed motions involving larger muscles on male subjects
closer to the population average in anatomical dimensions.
We take this into account in study design and data analysis.

Unique to our study is that we allow users to freely choose
their posture within each condition. We cluster these pos-
tures based on the recorded data to identify commonalities,
e.g., leaning forward or backward. This allows us to analyze
the amount of posture variation, and how different each pos-
ture type is in terms of performance and ergonomics. Full-
body biomechanical simulation was not previously applied
for analyses of interaction while sitting due to difficulties in
measuring external forces. To allow users to change their pos-
ture while seated and record the main external forces acting
on the human body, we constructed a chair instrumented with
force sensors. The recorded forces are fed into our biome-
chanical analysis.

Our experimental task centers on the multidirectional version
of Fitts’ pointing task. This task allows the measurement of
throughput (bits/s) by considering the accuracy and speed of
aimed movements [25]. Moreover, it allows us to cover all
movement directions on each surface. We selected pointing
gestures as the subject of our study, because discrete aimed
movements are the most widespread input across all surfaces,
and encompass both capacitive and resistive techniques. Fu-
ture work can extend this work to multitouch gestures follow-
ing our methodology.

The secondary contribution of this paper is the dataset,
TOUCHCORPUS, which we release for the research commu-
nity. The dataset includes the raw data captured with the op-
tical motion capture system as well as processed data, the
latter on both a frame level (1.3 million observations) and
aggregated per trial and movement direction (4280 observa-
tions). For each observation the dataset includes more than
1,000 variables describing performance and ergonomics as-
pects. The dataset captures fundamental aspects of touch in-
put that may support many investigations. The corpus can
speed up future research on touch input, avoiding repeated
data collection. Moreover, it is our hope that a shared cor-
pus will contribute to the replicability of studies and make it
possible to compare findings from different publications.

RELATED WORK
We review previous work from two areas: physical er-
gonomics and performance, two areas which have rarely in-
tersected in previous work.

Physical Ergonomics
Studies of physical ergonomics in touchscreen interaction
have looked at comfort, user preferences, joint angles, pos-
tures and muscle use. Each study has focused on a particular
type of surface.

Müller-Tomfelde et al. [16] collected user preferences for
touch display workspace design. They found that the majority
of participants preferred a tilted display at 45° or 30° angles
to horizontal or vertical configurations. They explained this
preference by better visibility and reachability of the display,
improved comfort for the visual system and body posture.
Barbé et al. [2] simulated postures for interaction with dif-
ferent touch displays in airplane cockpit. They validated the
models using motion capture data and a simple biomechani-
cal simulation CATIA/HUMAN. The location and orientation
of the display had a strong influence on physical effort. In par-
ticular, it needs to be taken into account for prolonged tasks
longer than 60 s. Davis et al. [5] analyzed data entry com-
paring touchscreens to physical keyboards. They found that a
touchscreen is equal to or better than a keyboard in terms of
kinematics, discomfort, usability, and error rates. A tilted ori-
entation was preferable to a horizontal or vertical orientation,
an effect that was influenced by both physical and visual er-
gonomics [23]. The authors conclude that the biomechanical
analysis was limited, as a deeper analysis of physical loads
inside the body could not be performed. Young et al. [31] as-
sessed postures and muscle activity in shoulder and forearm
during tablet interaction. They made several findings: the

Understanding & Extending Touch Interfaces CHI 2015, Crossings, Seoul, Korea

1818



wrist is often operating in close-to-extreme angles, the fore-
arm extensor muscles are highly activated in text entry, the
trapezius muscles have higher activation when the tablet is on
the table, and that the anterior deltoid has high variance when
the tablet is heavier. Kim et al. [12] analyzed smartphone in-
teraction and found that the body posture (sitting, standing,
sitting at desk) affects the range of motion and the muscle ac-
tivity of the thumb. They concluded that deeper analyses of
ergonomics are necessary in future work.

Performance
Touch input has been found to be advantageous but also
challenging when compared to mouse and keyboard [29, 3].
Touch lacks the haptic feedback of a physical button, and
it suffers from occlusion and the fat finger problem. How-
ever, it performs relatively well in pointing tasks that involve
medium-sized and big targets. Due to its directness it has ad-
ditional advantages for novice users [29, 24].

Multiple studies have analyzed input performance with touch
surfaces. However, as noted, most exclusively focused on a
particular device [14, 24, 13, 20]. We are aware of only a sin-
gle publication comparing different types of surfaces. How-
ever, it analyzes only reading comfort and performance [15].

Many previous studies look at accuracy. Beringer et al. [4]
analyzed response times and accuracy on vertical touch dis-
plays, finding them to be non-uniform with respect to the tar-
get location and to the angle between line-of-sight and the
screen. They also modeled input offsets between touch points
and targets, which improved the accuracy of touch for a par-
ticular participant. Park et al. [20], similarly to Beringer et
al., assessed the accuracy of single-thumb interaction with a
smartphone. They found that distributions of touch points are
Gaussian and distinct for each participant, button location,
and size. Similarly, Parhi et al. [19] reported touch accuracy
limits for PDAs, recommending minimum target sizes of at
least 9.2 mm for single target tasks and 9.6 mm for multi-
target tasks. Wang et al. [27] analyzed the touch area for
all fingers on a tabletop and extracted touch area properties
as shape, size, and orientation. Holz et al. [9] analyzed hu-
man errors while using touch and concluded that the origin
of errors is not the fat finger problem, but the perceived in-
put point, which they model based on roll, pitch and yaw.
Their projected center model [10] performs significantly bet-
ter than the standard method, decreasing input offsets to as
low as 1.6 mm.

A large number of other studies investigate input performance
in general, taking speed into account. Most of the analyses
have used Fitts’ law modeling [25]. Sears et al. [24] found
that direct touch outperforms mouse input on vertical touch-
screen when pointing to targets larger than single pixel. With
additional stabilization the performance was the same and
the error rate for 4 pixel and 1 pixel targets significantly de-
creased. Micire et al. [14] confirmed the suitability of Fitts’
law models for horizontal tabletops. The study found that
touch performes better than mouse input for all but 10mm
targets; however, for 10mm and 20mm targets, the error rate
was higher for touch input. Kin et al. [13] found that any
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Figure 2. The experiment was carried out in a motion capture labora-
tory equipped with a special chair instrumented with force plates. Sur-
faces were emulated with cardboard. The targets were registered in 3D
space and tracked during performance. Here a user is performing the
task in the Tablet condition (seated). The inset shows an example of the
multi-directional target setups used in the experiment.

touch-based method outperforms mouse input in a multitar-
get selection task, while the difference between multitouch
and touch is very small. Sasangohar et al. [22] found that
direct touch input on a tabletop provides significantly better
performance for most targets in a tapping task, although it
has the worst error rate for the smallest targets. Po et al. [21]
compared pointing performance of mouse and direct touch
input in the upper and lower visual field of a large vertical
display. Oehl et al. [17] compared pointing with a stylus to
the same target setup on touch displays of different screen
sizes. Their surprising finding was that for difficult targets
(small, distant) the participants performed better on bigger
rather than smaller displays.

To sum up, previous work has mostly analyzed only a single
surface type at a time, and focused either on ergonomics or
performance. All surface types were treated the same way. In
contrast, we consider the two factors together.

EXPERIMENTAL METHOD
This experiment compares six surface conditions in a multidi-
mensional target selection task. All movements are recorded
with a motion capture system. We built a chair with sensor
plates to record external forces while seated. Figure 2 pro-
vides an overview of the setup.

Participants
40 participants (26 males and 14 females) were recruited at
the local university campus. The age range is 19 to 39 years,
with a mean of 24.9. The range of heights is 156-190 cm
(mean 171.4 cm). The range of weights is 47-95 kg (mean
67.4 kg). The right hand was the dominant hand for 38 of
the subjects. No participant had a known musculoskeletal
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or neural disorder. We also collected their reports of previ-
ous experience with touch screens. Most participants used
a smartphone on a daily basis. They were compensated for
participation at a rate of 10 Euro/hour.

Experimental Design
We follow a 6 x 12 within-subject design with 6 surface type
conditions and 12 target selection conditions (see below). The
order of surfaces was randomized for each subject, and within
each surface condition the target selection conditions were
randomized, too. The surface types are: public display, table-
top, laptop, tablet, smartphone two hands, and single hand.
We have selected the most widely used condition for each
surface type: standing for the public display, and seated in
other cases. The 12 target selection conditions consist of:

• index of difficulty (3): 2, 3.5 and 5 for small and medium
surfaces; 2, 4 and 6 for large surfaces;

• approach angle (4): 0°, 45°, 90°, 135°

Target sizes on each surface were proportional to the screen
size. They were 60, 28 and 10 mm for the public display; 50,
22 and 8 mm for the tabletop; 20, 14 and 7 mm for the lap-
top; 18, 10 and 7 mm for the tablet; and 7.5, 5 and 3.6 mm
for the smartphone. Movement amplitudes on all surfaces
matched screen size. In smartphone conditions amplitudes
were shorter than marker error limits, limiting the applicabil-
ity of the full-body simulation. Because biomechanical sim-
ulation has limited validity for small-scale movements [1],
only 10 users participated in the two smartphone conditions
in addition to the other ones. The remaining 30 participated
in all other conditions except the smartphone conditions.

Task and Materials
We used a multidirectional Fitts pointing task [25] with circu-
lar targets, 3 index of difficulty (ID) and 4 directionality con-
ditions: in total, 12 conditions for each type of surface (the
target setup is visualized in Figure 2). In contrast to a typical
multidirectional pointing task in which users perform point-
ing movements, changing the target direction after each one,
in our experiment the participant performed around 50 repet-
itive aimed movements for each condition, without changing
direction on the fly. The participant had to select the given
target and then auditory feedback was given. Next he needed
to select the opposite target.

To minimize the effect of surface friction, we used target se-
tups printed on paper. They were printed on surface-size pa-
per and affixed to a stand, a tabletop, and a tablet-shaped
piece of plywood. The “tablet” is also tracked by the mo-
tion capture system through three rigidly attached markers.
For the “smartphone” conditions we used a real device, as
we needed higher tracking accuracy than our motion capture
system could provide. We selected the Galaxy S3 for this
condition as a representative device, because its screen size is
close to the market average, and it offers a screen with high
performance and resolution. The target setup on the device
was represented statically, similarly to the printed setups.

Procedure
Each study began with the subject wearing the motion cap-
ture suit and standing in an upright static pose. This is nec-
essary for musculoskeletal model scaling. Then the subject
sought a comfortable posture for the surface we had selected
randomly. The experimental task was then introduced and
practiced. Next, the experimenter selected a random task
condition and administered it with a custom-written software.
The participant first performed a calibration for two given tar-
gets by touching their centers, and the system stored the end-
effector positions. We used this to provide auditory feedback
while the task was performed.

Next, the participant could practice the task before the experi-
menter started the recording. The participants were instructed
to perform repetitive aimed movements between a given pair
of targets “as fast as possible while keeping the accuracy at
a specified level”. The system counted 50 aimed movements
and then gave the signal to stop the selections.

After the participant completed the task in all conditions of
a surface type, a break was provided and the next device
brought. Each session was split into 6 blocks correspond-
ing to surface type, lasting approximately 15 minutes. The
participants were allowed to take breaks when they wanted to
rest. After the trials, we conducted an informal interview. We
asked about participants’ experience with touchscreens and
their preferred experimental condition, and we measured the
weight of the participants.

Apparatus
Motion capture system: The experiment was performed in a
motion capture laboratory with no vocal or visual distractors
during the tasks. Motions were tracked with a PhaseSpace
Impulse optical motion capture system featuring 12 cameras.
The system tracked 38 active markers attached to a skin-tight
motion capture suit at defined anatomical points. We added
extra markers to the end-effectors (relevant fingertips). The
motion was tracked with a frame rate of 480 Hz and an accu-
racy of 1/2 mm.

Chair: External forces were recorded with a custom-built
low-cost force chair and platform with two integrated Phid-
gets bridges and 8 load cells (2000N, 2x1000N, 5x500N; max
error = 0.2%) (Figure 2). The chair sensed the most signif-
icant forces on the platform under the feet, under the seat,
on the backrest and both arm rests and at two movable force
platforms of 30cm x 40cm. The height of the seat was 50cm,
width 45cm and depth 40cm; the height of the armrest was
70cm and width 8cm; and the backrest height was 95cm. The
chair provided the force data at 125 frames per second. Figure
2 shows a user sitting on the chair in the Tablet condition.

Synchronization: Motion capture and force data were syn-
chronized in real time using a custom-developed application
on a high-end machine (Dell Precision M4800) to minimize
latency (<5ms). For the smartphone conditions, we created
an Android application for tracking touchscreen events. The
touch screen tracking had non-uniform sampling with an av-
erage framerate close to 60Hz.
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ANALYSES
We here describe the preprocessing and analysis of data for
performance and ergonomics indices.

Preprocessing
Our preprocessing follows practices in motion capture based
biomechanical simulation (see e.g. [1]). We clean marker
data from occlusions, reflections, and other artifacts with a
heuristic approach and Kalman smoothing. We then align
mocap data with force data and touchscreen recordings, and
segment trial-level data into individual aimed movements.

Performance modeling with Fitts’ law
We follow recommendations from previous research [25] and
use the Shannon formulation of the index of difficulty (ID):

ID = log2

(
D

W
+ 1

)
where D is the amplitude and W is the target width. The
unit of ID is bits. We compute the effective target width
We = 4.133σ and amplitude De =

∑N
i=1Di/N instead of

D andW , where σ is the standard deviation of endpoint posi-
tions,Di is the distance between start point and end point of a
single movement and N is the number of aimed movements.
We compute the coefficients a and b of Fitts’ law using least
squares fitting for a linear model:

MT = a+ b× IDe

where MT is the average movement time. We assess good-
ness of the fit by computingR2 for each model. Furthermore,
we calculate throughput TP for each condition as:

TP =
1

y

y∑
i=1

 1

x

x∑
j=1

IDeij

MT
ij


where y is the number of subjects and x is the number of trials
performed in a particular condition.

Biomechanical Simulation
Although biomechanical computations have been known for
decades [30], tools for motion capture based biomechani-
cal simulation [6] and high-fidelity muskuloskeletal models1

have reached maturity only recently. In HCI, the tools ap-
peared in publications last year [1]. The simulation provides
a great opportunity to “look inside the body” of users as they
interact with computers, with no obtrusive instruments. It es-
sentially reverse engineers observed motion to infer the rel-
evant anatomical events. The variable transformations per-
formed during biomechanical simulation are described below.
Motion of markers in 3D space is first explained as rotations
of joints given skeletal structure. Then, given the mass distri-
bution of the body, required moments and forces at joints are
estimated. Finally, given muscle anatomy, plausible muscle
activations are estimated.

In our work we use the state-of-the-art, open-source biome-
chanical simulator OpenSim [6] and a high-fidelity mus-
culoskeletal model from MusculoGraphics. The model is

1http://www.musculographics.com/html/publications/
publications.html

anatomically correct with respect to previous work.1 It rep-
resents the full body of an average adult male with 63 bones
(rigid segments), connected through 63 movable joints with
a total of 109 degrees of freedom, and actuated by 236 Hill-
type muscles which can exert active force along the muscle
action path between the attachment points [11]. The simula-
tor and the full-body model were recently validated against
EMG data in full-arm movements in an HCI task [1].

The simulation consists of multiple steps, the latter of them
yielding variables relevant for ergonomics assessment:

1. Scaling adjusts the generalized model size and weight to
match the anthropometry of the participant based on the
motion capture data recorded in the static pose and the par-
ticipant’s weight. Each bone is scaled according to the ratio
between corresponding marker pairs in motion capture data
and virtual markers attached to the model. The model’s
weight is scaled proportionally to the participant’s weight,
and then its distribution is adjusted according to segment
scaling ratios.

2. Inverse Kinematics computes angles at all joints of the
model which correspond to the cloud of points in 3D space
recorded by the motion capture system. Intuitively, it trans-
forms motions of points in 3D space to relative motions
of skeletal segments. The angles are estimated for each
frame by global minimization of the sum of squared er-
rors between the markers recorded in the experiment and
corresponding virtual markers attached to the bones of
the model, while keeping the movement constraints of the
joints.

3. Inverse Dynamics computes moments at joints and forces
inside the joints occurring between the bones and joint cap-
sule. They are calculated by directly applying Newton’s
motion laws to the kinematics data obtained in the previ-
ous step and the inertial and mass properties of the model
assigned at the Scaling step.

4. Static Optimization resolves the moments at joints to
forces exerted by the muscles acting at that joint and cor-
responding muscle activations. Muscle forces and activa-
tions are estimated by minimization of the sum of squared
muscle activations for each frame, with each muscle rep-
resented by Hill’s model. The static optimization assumes
that humans recruit their muscles in an optimal way with
respect to the sum of squared activations. This sum repre-
sents muscle stress and performs better than other criteria
in load sharing problems [7]. In some situations this as-
sumption can be false and human muscle usage can be non-
optimal, for example when co-contracting opposite mus-
cles; however, it has been shown to correlate well with
EMG recordings for the aimed movements we analyze [1].

The simulation is resource-intensive: the average time to run
Inverse Kinematics for a single trial is 4 hours. However, to
make proper posture assessment and accommodate posture
changes during a trial, we calculated Inverse Kinematics for
the whole dataset. On the other hand, the subsequent steps of
Inverse Dynamics and Static Optimization are computed only
for “representative” movements. Even then, Static Optimiza-
tion takes an average of 1.2 hours per movement. Follow-
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ing prior work [1] we select one representative movement for
every trial in each direction. We use the closest-to-average
performance for this selection.

Posture Clustering
During the trials, users were free to take any posture they
wanted. To make sense of this data, we use hierarchical clus-
tering on the Inverse Kinematics data to identify the main
types of postures for each surface type.

The Inverse Kinematics outputs serve as input for this step:
the angles at joints calculated by Inverse Kinematics are ap-
plied to the musculoskeletal model of an average adult male,
putting the model into the corresponding posture. In this pos-
ture we extract 3D locations of 22 keypoints at all joints of
the human body and use them as input for the clustering al-
gorithm. We have selected hierarchical clustering [8] because
it is flexible and does not make assumptions about the data.
We use Euclidean distance measure to treat all keypoints and
dimensions equally. To acquire compact clusters with mini-
mized variance we use Ward’s linkage criteria.

To select the correct number of clusters we examine com-
puted dendrograms and use multiple goodness-of-clustering
indices: Pearson gamma, Dunn index, average silhouette
width, and within-to-between ratio. The computations are
performed in R with hclust from the stats package and clus-
ter.stats from the fpc package. Following this approach, we
obtained 7 clusters for the tablet, 3 for the laptop, 2 for the
tabletop, 2 for the large display, 3 for the 2-handed smart-
phone, and 4 for the 1-handed smartphone. We introduce
these postures later on in the paper.

THE TOUCHCORPUS DATASET
The outcome of these analyses is a dataset that integrates all
variables extracted at different processing steps in a synchro-
nized way. As can be seen in Table 1, the dataset includes
1181 variables describing different aspects of performance,
ergonomics and experiment metadata. While the performance
variables have been studied for years in HCI, the ergonomics
variables from biomechanical simulation are more recent and
therefore described here in more detail:

• Joint angles are related to the discomfort during the in-
teraction. Operation of a joint at close-to-extreme angles
causes postural discomfort and poses high risk for future
musculoskeletal disorder, for example repetitive strain in-
jury or carpal tunnel syndrome. In the dataset we consider
extreme values at all joints.

• Excessive joint moments cause high load on the joint tis-
sues and can cause damage to the joint, in particular when
high moments are sustained for a prolonged period of time.
We consider peak moments as well as the values integrated
over the whole movement.

• Large muscle forces stress the muscle and tendon and can
cause damage to their tissue.

• Muscle activations take into account the muscle forces, but
normalized by the muscle size. The activation value of
each muscle ranges from 0 when muscle is at rest to 1 when

Variable Count Aspect
Subject ID 1 Exp metadata
Device ID 1 Exp metadata
Trial ID 1 Exp metadata
Index of difficulty condition ID 1 Exp metadata
Approach angle ID 1 Exp metadata
Target ID 1 Exp metadata
Location of targets 6 Exp setup
Location of endpoint centroids 6 Performance
Offset to target center 1 Performance
Mean offset to centroid 1 Performance
Movement time 1 Performance
Target amplitude 1 Performance
Centroid amplitude 1 Performance
Index of difficulty 1 Performance
Index of difficulty effective 1 Performance
Fitts model parameters 2 Performance
Fitts model parameters effective 2 Performance
R2 of Fitts models 2 Performance
Throughput 2 Performance
Throughput effective 2 Performance
Total mean muscle activation 1 Ergonomics
Total integrated muscle activation 1 Ergonomics
Extrema (min/max) of joint angles 218 Ergonomics
Peak joint moments 109 Ergonomics
Integrated joint moments 109 Ergonomics
Peak muscle forces 236 Ergonomics
Mean muscle activations 236 Ergonomics
Integrated muscle activations 236 Ergonomics
Posture cluster 1 Ergonomics

Table 1. Dataset variables extracted by the different types of analyses.

Condition Size Support Orientation Color
Tablet 19 x 24.3 cm Handheld —
Laptop 31 x 23 cm Supported Tilted

Tabletop 110 x 70 cm Supported Horizontal
Public display 85 x 120 cm Supported Vertical

Smartphone 2-hands 6 x 10.6 cm Handheld —
Smartphone 1-hand 6 x 10.6 cm Handheld —

Table 2. The surface types studied in this paper. We introduce a color
convention for the remaining analyses.

the muscle is maximally recruited. We use the muscle ac-
tivations integrated over a whole movement as an index of
muscular energy expenditure and fatigue.

RESULTS
We used MATLAB, R and MovExp [18] for exploring the
dataset. This section presents the main findings. We focus on
basic indicators of performance (throughput) and ergonomics
(muscle activation, muscle groups), and postures. For sta-
tistical testing, we use repeated measures ANOVA with an
alpha-value of .05.
Performance
We here focus on throughput as an aggregate metric of per-
formance. Full data on speed and accuracy is provided in
TOUCHCORPUS.

Figure 3(a) provides an overview of throughput versus sur-
face type. The effect of surface type on throughput was statis-
tically significant (F5,8 = 9.24, p < .0001). It can be clearly
seen in the figure that the tabletop has the highest throughput
and 2-hand smartphone follows in second place. The public
display showed a slightly lower performance, while the lap-
top and tablet conditions saw the worst user performance.
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Figure 3. Throughput and total muscle activation per surface type. Ver-
tical bars denote confidence intervals.
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Figure 4. Fitts’ law models for each surface type.

Average throughput was 6.55 bits/s. In the tabletop con-
dition it was 20.5% higher than average. With the 2-hand
smartphone it was 5.3% higher than average, and in the pub-
lic display condition 5.2% higher. By contrast, with the 1-
hand smartphone it was 8% lower than average, with the
tablet 10.9% lower than average, and in the “laptop” condi-
tion 12.1% lower. Fitts’ law models elaborate this view.

Figure 4 shows Fitts’ law models for the six surface types.
The plots show Movement Time (MT ) against Index of Dif-
ficulty (ID). All Fitts’ law models had high fit, with R2 >
0.95 in most cases. However, there are some non-linear com-
ponents visible for tablet, laptop, tabletop, and public display.
Still, fitting a nonlinear model increased the fit by only 1-
1.5%, and we therefore continued to use the linear model.

The Fitts’ law models elaborate the overview by crossovers.
For example, there is a crossover for the 2-hand smartphone
condition versus the tabletop condition. The tabletop is worse
in low ID conditions. The plots also show that the 1-hand
smartphone is different from other surface types, because it
provides high performance that is pronounced in the low ID
conditions. However, performance degrades much faster than
in other conditions when ID increases.
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Figure 5. Total integrated muscle activation vs. effective throughput.

Total Muscle Activation
The effect of surface type on total muscle activation was sta-
tistically significant (F5,8 = 10.59, p < .0001). Figure 3(b)
provides an overview.

We report standardized effect sizes for Total Muscle Activa-
tion, as its units are coupled with our musculoskeletal model.
We learn that total muscle activation was lowest in the laptop
and 2-hand smartphone conditions. In the tablet condition, it
was slightly lower than average (“touchscreen in general”). It
was the highest for the public display. The mean of total mus-
cle activation was 608.1. For 2-hand smartphone use it was
19.2% better than average, for the laptop 18.6% better, for the
1-hand smartphone 9.6% better, and for the tablet 6.9% better
than average. By contrast, the tabletop was 9.3% worse and
the public display 45% worse than average.
Trade-offs: Muscle Activation vs. Performance
We found a non-trivial relationship between (effective)
throughput and total muscle activation, as illustrated in Fig-
ure 5. The figure shows second order polynomials fitted to
the original data. The most surprising pattern in the plot
is that low throughput movements are associated with high
muscle activations. The reason is that the lowest throughputs
come from conditions with difficult-to-reach targets that re-
quire more careful control of muscles.

We also found that the approach angle influences through-
put. However, it has no effect on total muscle activation. As
stated before, average throughput is 8.5 bits/s. When consid-
ering the different movement directions, the highest through-
put was found for horizontal movements (+9%) and the low-
est for movements on a diagonal with 45° negative slope (-
6%) and vertical movements (-5%). Movements on the di-
agonal with 45° positive slope have throughput close to the
average.
Muscle Groups
Although input with all surfaces is carried out with the same
arm, biomechanical simulation exposes large differences in
which muscle groups are involved.

Interaction with tablet is characterized by high activations of
side and back deltoids for interacting arm. For the arm that
holds the surface, we see higher activation in frontal deltoid,
triceps, and infraspinatus. Laptop use is characterized by high
activations of the front and medial deltoids and infraspinatus.
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Figure 6. Posture clusters (top) per surface. Total activations of major muscles are shown below per surface type.

The tabletop recruits muscles of the lower back and the me-
dial deltoid of the input arm. The public display, similarly
to the laptop, recruits frontal and medial deltoid muscles of
the input arm. Additionally, due to the standing posture, it
shows higher total activation in all postural muscles. When
interacting with the smartphone with two hands, the lower
back muscles of the holding arm, as well as upper back, me-
dial, and back deltoid muscles, are strongly activated. When
interacting with one hand, upper back muscles are not that
activated, but the medial and back deltoids of the interacting
arm are more strongly activated.
Posture Analysis
Our posture clustering permits insight into differences within
surfaces. Recall that users were allowed to take whatever pos-
tures they liked. We first report on the postures used by our
participants. The clusters are visualized in Figure 6.

The following observations can be made.

• Tablet: These postures were grouped into six clusters. In
the first five, the subjects hold the tablet in their hands in
a low position close to their stomach. In the sixth cluster,
they hold the surface closer to their face in a higher posi-
tion. None of the subjects rest their back on the backrest of
the chair, while four sit with his/her legs crossed.

• Laptop: These postures were grouped into three clusters.
In all three, the subjects keep their left arms under the table
and none of them rest their back on the backrest of the
chair.

• Tabletop: Two clusters were found. In the first, the sub-
jects mainly rest their left arm on the armrest while they
perform their task. In the second, they have both arms on
the table. Again, none of the subjects rest on the backrest
of the chair.

• Public display: Two clusters were found. In both, subjects
keep their left arm along their body. The main difference is
that in the first cluster, the subjects have their trunk closer
to the surface.

• Smartphone, 2-handed: Three clusters were found. In the
first, the subjects rest on the backrest of the chair and place
their elbows on the armrests, so that the trunk is oblique
with respect to the seat. They keep the phone very close to
their face. In the second, they sit instead in a straight po-
sition keeping the phone close to their knees. In the third,
they sit back on the chair, resting their back. They keep the
phone close to their face and their legs are outstretched.

• Smartphone, 1-handed: Four clusters were found. In the
first, the subjects keep their right elbow on the right armrest
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and they have their torso bent toward the front. In the other
clusters, the subjects sit in an upright position. In the third,
the subjects keep their legs crossed, and in the fourth they
keep the phone close to their face.

Note that by using the clusters, we can improve the fit of Fitts’
law models by 10%. The new goodness scores are shown in
Table 3. This is in line with the idea that muscle groups affect
Fitts’ law model parameters. By decreasing heterogeneity in
postures we can therefore also improve model fit. This ef-
fect is not achieved by arbitrary reclusterings, for example
per user only.

DISCUSSION
The study was successful in exposing several novel findings
about touch surfaces. The main thrust of the results is that
even if surface interactions superficially appear similar, there
are considerable differences in performance and fatiguabil-
ity. In performance, we find large but not extreme differences
among the surfaces. Performance-wise, even selection tasks
with a high ID can be deployed on all surface types. By con-
trast, the differences we found in muscle activation and mus-
cle groups are more pronounced. We summarize the observa-
tions as follows:

• The tablet has poor performance and is suitable for long-
term use only after adjustment of the pose to avoid neck
problems.

• The laptop has mediocre, almost poor performance, but it
is suitable for long-term use.

• The tabletop has high performance but it is not suitable for
long-term use, unless proper posture support is provided.

• The public display has high performance but it is not suit-
able for long-term use.

• The smartphone used with two hands has high performance
but it is unsuitable for long-term use.

• The smartphone used with one hand has medium perfor-
mance and is also unsuitable for long-term use.

While anyone can inspect the data for further comparisons,
we highlight two surface types here: laptop vs. public dis-
play. They differ in interesting respects although both are
used via movements of the arm. Laptop users’ postures vary
only slightly, with most users keeping neutral posture and
avoiding excessive stresses. These postures activate mainly
shoulder and arm muscles and are associated with low to-
tal muscle activation, which suggests that the surface is suit-
able for longer-term use. Contrary to expectations, the lap-
top provided the best physical ergonomics of interaction with
the most neutral posture and low muscle activations, while
providing acceptable throughput. While public display users’
postures also vary very little, these postures are associated
with high total muscle activation in the shoulder. The sur-
face is not suitable for longer-term use although users’ per-
formance with this surface was very good. As expected, in-
teraction with public displays is very demanding in terms of
total muscle activation, not only because of the standing pose,
but also due to longer movements in the vertical plane, in par-
ticular when reaching targets that are located higher on the
display.

To contextualize our findings, we qualitatively compared
them with previous studies. Similarly to Barbe et al. [2], our
results confirmed significant differences among different pos-
tures. Although the conditions cannot be directly compared,
the laptop in front of the user in our study demonstrated the
lowest fatigue index among conditions, agreeing with Barbe
et al.’s “tilted display.” The recruitment of shoulder muscles
in the tablet condition varied with respect to posture and the
presence of support, and the upper trapezius on the dominant
side was more activated than on the non-dominant side, as in
the study of Young et al. [31]. Similarly to Oehl et al. [17], we
observed an effect of display size on throughput for tilted and
horizontal displays, but not for handheld and vertical display
conditions. As in the study of Wagner et al. [26], we observed
different grips during the experiment, including both novice
and expert grips. However, in our case users were seated, and
they often adjusted their posture and supported the tablet with
their knee or leg.

In addition to decisions on which surfaces to use and how,
these results could also be used to inform the design of
multi-surface setups. These are becoming common in control
rooms, aircraft, and currently also in desktop settings (e.g.,
[28]). The design problem here is how to allocate parts of the
interface across many surfaces.

Finally, we note that the present paper has provided only the
very first overview of this dataset. The TOUCHCORPUS al-
lows researchers to continue empirically-founded analyses of
touch input. By releasing it to the community, we wish to
support further studies of this kind.
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