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Figure 1: SmartSleeve is a wearable textile that can detect 2D surface and 2.5D deformation gestures, like twist (a). We use
an unobtrusive and robust sewn-based connection (b), which withstands high deformation gestures (c). The force distribution
values of the gestures (d) are further processed for real-time classification with a hybrid gesture detection algorithm (e) to control
a media player (f), for example.

ABSTRACT
Over the last decades, there have been numerous efforts in
wearable computing research to enable interactive textiles.
Most work focus, however, on integrating sensors for planar
touch gestures, and thus do not fully take advantage of the
flexible, deformable and tangible material properties of tex-
tile. In this work, we introduce SmartSleeve, a deformable
textile sensor, which can sense both surface and deformation
gestures in real-time. It expands the gesture vocabulary with
a range of expressive interaction techniques, and we explore
new opportunities using advanced deformation gestures, such
as, Twirl, Twist, Fold, Push and Stretch. We describe our sen-
sor design, hardware implementation and its novel non-rigid
connector architecture. We provide a detailed description of
our hybrid gesture detection pipeline that uses learning-based
algorithms and heuristics to enable real-time gesture detection
and tracking. Its modular architecture allows us to derive new
gestures through the combination with continuous properties
like pressure, location, and direction. Finally, we report on
the promising results from our evaluations which demonstrate
real-time classification.
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INTRODUCTION
Computing technologies have become mobile and ubiquitous
and, as predicted by Mark Weiser [66], weave themselves into
the fabric of everyday life. While many objects and surfaces
have been augmented with interactive capabilities, including
smart phones, tabletops, walls, or entire floors, making cloth-
ing interactive is still an ongoing challenge. Over the last few
decades, a lot of research in wearable computing has focused
on integrating sensors into textiles [6, 40, 7, 50]. Most of
the existing work in the design space of interactive clothing
focuses on surface gestures, planar interactions, such as touch
and pressure [54, 47, 37, 13]. Basic deformation has also been
shown with stretch [4, 61] and rolling for 1D input [29, 17].

In this work, we introduce SmartSleeve, a deformable tex-
tile sensor, which can sense both touch and deformations in
real-time. Our hybrid gesture detection framework uses a
learning-based algorithm and heuristics to greatly expand the
possible interactions for flexible, pressure-sensitive textile sen-
sors as its unified pipeline senses both 2D surface gestures
and more complex 2.5D deformation gestures. Furthermore,
its modular architecture allows us to also derive new gestures
through the combination with continuous properties like pres-
sure, location, and direction. Thus, our approach allows us
to go beyond the touchscreen emulation and basic deforma-
tions found in previous work. We particularly emphasize the
opportunity to enable both isotonic and isometric/elastic input,
as well as, state-changing interaction with integrated passive
haptic feedback. This enables us to support a wide range of
deformation gestures, such as Bend [21], Twist [65, 31, 62],
Pinch [65, 29, 31, 62, 17], Shake [31], Stretch [31], and Fold
[16, 63, 31]. We further explore the usage of multi-modal
input modalities by combining pressure with deformation.

Summarizing, the main contributions of this paper are:

• A hybrid gesture detection pipeline that uses learning-
based algorithms and heuristics to enable real-time gesture
detection and tracking for flexible textile sensors.
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• Two user studies that show the feasibility and accuracy of
our gesture detection algorithm.

• A flexible, resistive-pressure textile sensor, with a novel
non-rigid connector architecture. We propose a sewn-based
connection between the textile sensor and the electronics.

• A set of novel interaction techniques, which arise from the
combination of surface gestures, deformation gestures, and
continuous parameters (pressure, location, and direction).

RELATED WORK
Limited input gestures on textiles
Several empirical studies investigated how skin or textiles
can serve as gestural input surfaces. More than touch [65]
reported an elicitation study in a non-technological environ-
ment that shows how a set of gestures, including touch, grab,
pull, press, scratch, shear, squeeze, and twist, are preferably
performed on the forearm or the hand. Lee et al. [31] explores
deformation-based user gestures by using various materials
like plastic, paper and elastic cloth. Bending, folding, rolling,
crumpling and stretching were suggested as possible deforma-
tions. Troiano et al. [62] investigated how depth and elasticity
of a display can be used to simulate deformation and provided
a set of gestures including grabbing, pulling, pushing, twisting,
pinching or moving.

While researchers presented diverse gesture sets appropriate
for textile input spaces, several solutions focused on specific
input gestures on textiles. Touch sensitive fabrics were used
for a range of gestural input on trousers [23], pockets [47] or
sleeves [54]. Stitch-based solutions detect bends and folds
[29, 14] by sensing interconnections between seams. Simi-
larly, grabbing a fold at a specific angle is detected by using
embroidered pads [17]. GestureSleeve [54] has an interesting
approach for extending the input space of a smart watch to the
sleeve, but only supports tap and stroke gestures. We choose
to focus on a rich set of 2D touch and 2.5D deformation-based
gestures on a single sleeve, to combine recent advances in
empirical studies with current technological possibilities. We
combine directional and pressure sensing that can deliver a
wide range of novel interactions, supporting additional degrees
of freedom with expressiveness.

Facilitating deformation-based input with 2.5D
Pressure-sensitive input has been a topic of interest in the HCI
community for several years now, with research efforts ranging
from explorations of pressure as alternative input metaphor
[24, 33, 58] to the development of pressure-sensitive input
devices [8, 33, 35]. To date, pressure has been used for a
variety of applications such as zooming, scrolling, text entry,
or widget control [34, 41, 42, 43]. A comprehensive overview
of existing work in the field, can be found in [67]. However,
these solutions are limited to a rigid form factor. In contrast,
research in the domain of bendable interfaces (e.g., [15, 30,
55]) has demonstrated novel interaction techniques based on
flexible sensing or input and output capabilities. Addressing
this arising potential, SmartSleeve combines pressure-sensitive
input with bending and stretching capabilities into a flexible
input sensor that can form the basis for the design of more
scalable, flexible, and transformable user interfaces [25].

Optical solutions leverage overhead cameras as in Photoelastic
Touch [49], or structured light scanners as for deForm [12].
While these solutions were able to sense deformations of a

flexible surface or even clay deformations on the surface, they
need space for the optical tracking system.

Actuated solutions such as [28] are constructed of pins and
servo motors. These approaches require space and power, as
well as limits input due to their rigid structures. Ferromagnetic
input solutions [27] sense on base of a matrix of sensor coils
(copper wire and permanent magnets). However, the form
factor is limited, the sensor coils add weight and are more
applicable for above-the-surface sensing.

Resistive solutions offer the potential of sensing deformations
in thin form factors. UnMousepad [46] is constructed of sev-
eral layers (FSR surface, resistive layer, conductor, clear sub-
strate). FlexSense [45] is a thin-film sensing surface based on
printed piezoelectric sensors. These solutions are already very
thin by providing the ability of sensing deformations, but need
a rigid backing.

SmartSleeve is designed to be worn directly on body, and thus
needs to be fully flexible and soft, while having the capability
to recognize a wide range of deformations. This is achieved
by its thin textile form factor.

Enabling always-available micro-interactions
In order to help users to perform micro-interactions, which
are short-time interruptions [1], researchers have proposed a
variety of ways to enable easy and fast access to mobile devices
and overcome the limited interaction space on small form
factor devices. Muscle input tracks the muscle tension to sense
gestures [48]. Body-projected interfaces provide visual output,
which is used for the interaction [18, 22]. Other approaches
enlarge the interaction space by using sticky touch sensors
[64], artificial skin [26] or enhancing the interaction space of
existing devices [2, 38, 13]. While all these approaches are
very diverse, they are all location variant.

Real-time, continuous gesture recognition
A number of pressure based sensing have explored sport and
activity tracking. Most closely related to our resistive textile
hardware and nature of the signal are [59, 69, 70]. Although
these techniques achieve good results, recognizing various
types of gestures in a single classifier requires large amounts of
training which is a laborious task. It further requires extensive
handcrafted features especially for temporal information which
is computationally expensive as well.

Typical learning-based gesture recognition approaches detect
trained gestures. In this paper, we propose a hybrid algorithm
of combining learning-based method with heuristics that are
experimentally derived. This combination enables recognition
of a wide variety of untrained classes with high accuracy at
low computation cost, and shows robustness across different
users and sessions.

More related to our approach is the Pose Recognition mecha-
nism in [3] that distinguishes five body poses on the floor. We
demonstrate how to extend a similar approach on clothing to
derive 13 motion gestures from three trained classes of static
ones.

In our work, we are specifically motivated to embrace the chal-
lenge of designing a low power algorithm that can seamlessly
run in real-time on the limited hardware resources available in
wearables.
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SMARTSLEEVE
SmartSleeve, pictured in Figure 1, is a fully wearable and
highly deformable textile sensor that covers a large surface,
features a high amount of sensors, and offers a high pressure
resolution. In this section, we present the design of the sensor
and the rapid fabrication. Table 1 provides an overview of the
characteristics of the SmartSleeve sensor.

Parameter Value
Force detected 50-500 g
Sample rate 100 Hz
Sensor resolution 1.66 sensor/inch
Sensor count 360 sensors
Weight in total 124 g
Length of the sleeve 40 cm
Upper arm perimeter 26.5 cm
Elbow perimeter 26.0 cm
Wrist perimeter 16.0 cm

Table 1: Sensor characteristics.

Sensor Design
The SmartSleeve sensor builds on prior work [37, 32], that
introduced pressure-sensitive textile sensors which consist of
three layers of fabric. We will outline how this technology
can be used as clothing to enhance wearers input possibilities
without feeling rigid connection wires or other components
added to the fabric.

All layers of SmartSleeve are equally bidirectionally stretch-
able and deformable. The top and bottom layers are made of
Narrow Stripe Zebra fabric distributed by HITEK∗, character-
ized by alternating strips of conductive and non-conductive
fabric, see Figure 2. The strips are 9 mm wide each. The
zebra-fabric layers are orthogonally aligned to form a ma-
trix. The middle layer consists of a pressure sensitive fabric
(EeonTexTM† LTT-SLPA 20 k). It has a slightly larger size to
prevent the two conductive layers from shorting. Sandwiching
all three layers creates a deformable and stretchable pressure-
sensing matrix, which can be used to envelop complex 3D ge-
ometries. The three loose layers were stitched together along
one side of the sensor to prevent the sensor grid from shifting.
The sleeve constricts at the forearm part of the sleeve, which
would lead electrical shortcuts. To prevent adjacent connec-
tions from shorting, an additional stretchable non-conductive
fabric has been sewn lengthwise on the conductive layer, which
conducts lengthwise (cf. Figure 2 b).

b c da

Figure 2: The sandwich architecture of the SmartSleeve
sensor (a). The bottom layer (b) and top layer (d) have
conductive and non-conductive threads. In-between is the
the pressure-sensitive layer (c).

∗www.hitek-ltd.co.uk
†www.eeonyx.com

SmartSleeve is designed to cover the complete forearm and
half of the upper arm. Even though this sensor technology can
be easily scaled up to detect other body regions, prior work
has shown that this region is most comfortable for interactions.
The sleeve is designed to fit a human with a wrist perimeter
size of 16 cm, elbow perimeter of 26 cm and an upper arm
perimeter size of 26.5 cm. Early tests have shown that the
sleeve has to fit tightly to reduce failure of short cutting adja-
cent wires, but not too tightly, in order to support deformation
gestures. The sensor itself consists of 24 rows (around the arm)
and 15 columns (lengthwise), resulting in a total of 360 pres-
sure sensor spots with a sensor density of 1.66 sensors/square
inch. SmartSleeve can be worn directly on the skin. To prevent
errors from the influence of skin moisture, it was usually worn
over a long-sleeved tight-fitting running shirt.

Unobtrusive and Robust Sewn-Based Connection
In this section, we contribute an unobtrusive and robust method
to connect not-rigid, stretchable textiles with the rigid electron-
ics. Prior work has used rigid snap buttons [37, 32] to connect
textile with electronics. However, using rigid connections
negatively affects the comfort of the sleeve and its robustness.
Therefore we explored alternative methods to connect textiles
with electronics hardware.

Yarn would be the favourable connection due to its surface
and shape behavior. Although many companies produce and
sell conductive yarns‡, very few of these yarns withstand the
soldering temperature, which is required to connect the yarns
to the PCB board.

Conductive 
fabric

Non-conductive 
fabric

Non-isolated wire

Isolated wire

Figure 3: A hand-sewn connection between the textile sen-
sor and the electronics provides a more flexible connection.

A possible alternative is solderable yarn§. Although these
yarns are highly conductive, they are not insulated, which
makes them unsuitable for our design as they would cause
shortcuts. Previous research has also shown several ways to
insulate conductive yarns by “couching”, iron-on techniques
or fabric paint [5]. However, the tight sleeve needed a solution
which preserves the look and feel, as well as, the comfort of
use as much as possible.

Therefore, we opted for basing the connector on a wire with
a small diameter which is conductive and insulated. During

‡www.schoeller-wool.com, www.bekaert.com, www.statex.biz,
www.araconfiber.com
§High Flex 3981 7X1 Silver or High Flex 3981 Flat Braid Karl Grimm,
www.karl-grimm.com
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our experiments with different wires, we found the Road Run-
ner/Verowire wire to be the most promising one. These copper
wires are normally used for repairing or correcting printed cir-
cuit boards. The wire has a small diameter of 0.15 mm, which
makes it very deformable. It is coated in solderable enamel
or self fluxing polyurethane, which acts as an insulator. The
coating can be removed when a high temperature is applied
(400–430 ◦C). Hence, before sewing, we use the solder iron to
remove 3 cm of insulation.
A first method consists of handsewing the connections. A
close-up of one connection is depicted in Figure 3. It consists
of 3 cm of non-insulated wire that is affixed using a stitch to a
row or a column strip of the zebra fabric. Although this stitch
itself is not stretchable, it requires little area and is therefore
straightforward to be sewn by hand.
In addition to the manual fabrication, we also performed initial
tests with a sewing machine using different stitching types us-
able for elastic materials, including Zig Zag, Double Overlock,
and Super Stretch, see Figure 4. Straight stitches or stitches
which are not adapted for elastic materials would either tear
the yarn or reduce the fabrics elasticity. We found that the
wire resists enough tension to be sewn with a Zig Zag stitch.
Therefore, a non-conductive yarn was used as top thread and
the wire as bobbin thread [11]. In this way, the bobbin thread
can easily float on the back side of the stitch without pass-
ing through the fabric substrate when using the machine at
maximum speed.

Zig Zag Double 
Overlock

Super 
Stretch

Figure 4: Fabricating the connection using a sewing ma-
chine, with Zig Zag, Double Overlock, or Super Stretch
stitch.

These different stitching types have different benefits and limi-
tations. As the wire is stiff, the equal stitch distances and the
little use of yarn of the Zig Zag stitch preserve the comfort
of use as much as possible. For the Super Stretch stitch, the
yarn tension was raised to maintain the elasticity of the stitch.
Otherwise, the wire would float in a straight line, which means
that the stitch would no longer be elastic. This is due to the
differences in the yarn elasticity between regular yarn (top)
and wire (bobbin). Because of that, the top yarn can tear more
easily. The Double Overlock keeps its typical pattern without
making any changes regarding yarn tension. Nevertheless, we
would not recommend to use this stitch as it needs more yarn,
which makes the fabric stiffer and thus reduces the comfort of
use. In conclusion, we would suggest to use the typical Zig
Zag stitch, as the pattern maintains the comfort of use. Due to
the simplicity of the pattern it is easily adjustable in its width
and it is sewable with the predefined yarn tension and thus less
vulnerable for tearing.

Driver Electronics
SmartSleeve is based on a resistive tactile sensor. This type of
sensor is subject to various sources of errors, such as crosstalk,
which affect the accuracy of measurements and the gesture
recognition. We evaluated different measurement principles
and algorithms to determine the best solution to yield high
accuracy and reduced crosstalk. First we analyzed how our sys-
tem behaves with a solution without crosstalk reduction [53].
Further, we evaluated the effects of grounding for crosstalk
reduction [10], the zero potential method [56] and virtual
grounding [52], the multiplexer op-amp assist approach [51],
and the resistive matrix approach [57].

Measurement Principle Average
Error

Without reduction [53] 34.5%
Grounding [10] 32.1%
Virtual Grounding [52] 42.6%
Multiplexer & Op-Amp assisted approach [51] 10.5%
Resistive Matrix Approach [57] 0.93%
Table 2: Overview of the measurement principles.

As depicted in Table 2, the Resistive Matrix Approach yielded
the best results and was therefore implemented in our system.
The measurement electronics consist of a microcontroller, one
single pole double throw switch, four multiplexers and four
shift registers. The shift registers are daisy-chained so that they
work as one big shift register. The shift register applies ground
potential to the measured column while all other columns
are connected to high potential. Whenever the shift register is
triggered, the low level jumps to the next column. Multiplexers
are connected to the row electrodes to forward single lines
to the ADC. Each single sensor spot is measured separately,
which means starting from the constant resistors which are
mounted on the PCB to the first cells in the row and first
column to all others. Then all other sensors gets measured row
by row.

INTERACTION TECHNIQUES
The unique SmartSleeve features enable a wide variety of
textile interactions. The sensor’s large input surface affords
input on multiple body locations and with both fine and gross
gestures. The sensor resolution enables both conventional
2D Surface Gestures and 2.5D Deformation Gestures. The
high pressure resolution provides continuous force sensing
and improves accuracy for detection of deformation-based
gestures. The design and implementation of the sleeve is based
on previous work [19], which has shown that the forearm is
the most comfortable position to interact with.

Based on these properties, we composed a set of candidate
gestures and conducted several brainstorming sessions. The
candidate gestures were then refined in an iterative design
process through several ideations with external participants
and two pilot studies, including a guessability study. The result
of this iterative process is a set of nine types of gestures, cf.
Figure 5, where eight of them have been discussed in previous
research. Surface Gestures are planar gestures, which are
performed on the textile, similar to conventional touch gestures.
Deformation Gestures (e.g. Fold, Bend, Twist) are based on
deforming the textile in more dimensions. Previous work has
focused on conceptualizing new gestures [31, 62, 68], and
on implementing one or a few gestures in a working system
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Surface Gestures Deformation Gestures
Wrist to upper arm Forearm to upper arm Wrist

Related work Input space

Surface Gestures [68] Tabletop o o o o o
On-Body Interaction [21] Skin ×
More than Touch [65] Skin o o o o
PrintSense [16] Film × × × ×
Flexy [63] Film ×
iSkin [64] Film × × × × ×
Pinstripe [29] Textile ×
GestureSleeve [54] Textile × ×
Deformable displays [31] Textile o o o o o o
Elastic displays [62] Textile o o
Grabbing at an angle [17] Textile ×
AugmentedForearm [36] Textile ×
SmartSleeve Textile × × × × × × × × × × × × ×

Table 3: The SmartSleeve gesture set compared with previous work (o = conceptional, × = functional).

[29, 17, 36, 54]. SmartSleeve, however, provides a unified
sensing framework which allows us to detect all of them within
a single pipeline, as shown in Table 3 . Furthermore, most
of the gestures can be done at any location on the sleeve, in
contrast to previous work, which restricts gestures to smaller,
dedicated, instrumented areas.

In addition to classifying a gesture, SmartSleeve detects three
properties: The Location (L) where the gesture is performed
on the sleeve, its Direction (D) and its Pressure (P) intensity.
Note that not all gestures can use all properties: the Bend
gesture, for example, can detect the pressure intensity, but
its location is fixed at the user’s elbow joint. Overall, these
properties improve the quality of the gesture recognition, but
they can also be used as design parameters. Using a property
like Direction considerably expands the possible gesture set.
To make use of these properties for certain gestures, we im-
plemented a hybrid gesture detection approach, which takes
advantage of the properties where appropriate. In total, our
gestures set includes 22 gestures (7 Deformation Gestures +
2 Surface Gestures + 1 derived Deformation Gesture + 12
derived Surface Gestures) as shown in Figure 5. We will now
discuss the Surface Gestures and Deformation Gestures in
more detail.

Surface Gestures
Previous work has shown that users tend to transfer conven-
tional multi-touch gestures to other modalities - especially for
standard commands [65, 31, 62]. Therefore, it was necessary
to support a broad set of Surface Gestures, as depicted in
Figure 5. By making use of location, direction, and pressure
properties, we are able to derive even more gestures, as shown
in Figure 5. In the case of the derivatives, we distinguish
between the following:

Swipe 2D motion with the finger or hand on the sleeve af-
fords relative or absolute positioning. Thus, the system can
support traditional touch interactions, where surface interac-
tions are mapped to, e.g., navigation, scrolling and panning.
The ability to distinguish between finger and hand makes it
possible to differentiate between coarse and fine control. In
addition, spatial differentiation between input regions can ex-
tend the interaction space. For example, in a 3D modelling

application, a movement across the forearm could mean a ro-
tation around the y-axis, while the same movement across the
lower arm could be recognized as a rotation around the x-axis.
Our eyes-free media player uses finger left/right swipes to skip
forward/backward in a track, while a left/right swipes with
the hand changes track. When our media player is used with
visual feedback, finger motion can be used for cursor control,
and swipe for menu option navigation.
Rub 1D back-and-forth motion with the finger or hand re-
sembles the metaphor of scratching something out with a pen.
Thus, we found it attractive to map it to deletion. It could be
used for deletion of an element, like dismissing a message
or deleting a calendar entry [68]. In addition, the pressure
intensity can be used to delete one or a whole set of items at
once. In our media player, rubbing removes the current track
from the playlist.
Spread/Close These gestures are widely used in “pinch-to-
zoom” interactions on multi-touch devices. They are derived
from the Finger gesture and make use of location and direction
(see Figure 5). While these gestures use multiple fingers, the
algorithm is the same. This interaction is applicable to scalable
interfaces with visual feedback, such as, for map navigation,
and image manipulation. These commands (except spreading
and closing) can be performed by one finger, multiple fingers,
or the full hand—depending on the gesture.
Deformation Gestures
In addition to Surface Gestures, SmartSleeve enables a wide
range of deformable gestures. The thin and elastic textile sen-
sor material affords freeform manipulation and deformation,
while our sensing technique detects gestures, state changes,
and continuous manipulation.
Twist Pinching the textile and twisting it affords rotational
control. The analogy to a physical knob makes it suitable for
actions that map to clockwise or counterclockwise motion. In
our media player, we use this gesture to increase/decrease the
volume. The ability to sense location, also allows multiple
virtual knobs along the textile—for example, to control an
equalizer or left/right balance. Pressure might be used to
control the rate (light touch would change the value more
slowly). The physical constraints that prevent the gesture to
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Derived GesturesTrained Gestures

Pressure Location Direction

Finger

Spread

StretchPush TwirlTwist Bend Fold

Swipe Right

Swipe Right Swipe Left Swipe Down Swipe UpHand Rub

Swipe Left Swipe Down RubSwipe Up

Close

Grasp Shake

Surface Gestures

Deformation Gestures

P
L
D

P
L
D

P
L
D

P
L P P

P
L

P
L P

P L D

Figure 5: The SmartSleeve gesture set comprises 22 gestures (7 Deformation Gestures + 2 Surface Gestures + 1 derived
Deformation Gesture + 12 derived Surface Gestures)

be rotated infinitely match the physical affordances of control
knobs that map to a value range. Our sensor currently does not
support infinite rotation, which can be found in scroll wheels,
or continuous rotary encoders.

Push Pushing the sleeve up can be treated as a state change,
e.g., to hide information [36]. The compressed sleeve provides
implicit visual and tactile feedback about the state. Our media
player uses this state to toggle mute, or to hide the UI or media
if used with visual feedback.

Fold Folding the sleeve is another way to change state. Here,
we rely on the difference in operation to distinguish it from
Push. While the end result may look similar, this operation
requires careful effort to perform. With our media player, we
map this operation to entering recording mode.

Twirl Twirling the textile around the finger requires inten-
tional coordination. It uses the metaphor of the ”reminder
knot” around a finger. We use it to assign importance to the
current item in the interface. The media player lets users rate

a track by assigning a ”star” or ”like” with the gesture. When
used with an audio book, podcast or radio show, it sets a book-
mark. One could also imagine saving the currently playing
voice mail message, or using it to record a voice memo. Lo-
cation for the Twirl can be used to later enable retrieval with
random access.

Grasp Grasping consists of the user grabbing the textile and
pulling it together into the fist. We use it as a metaphor for
retrieval. This, for example, allows us to complement Twirl
with a mechanism for activating a saved item. The location
can be mapped to specify which saved item to retrieve.

Shake Shake is a derived gesture from Grasping (cf. Figure
5). The metaphor is based on grabbing a container with objects
and shaking it. We map it to shuffling the tracks in our media
player. Other considered mappings would be to clear the list
or to close the application [31].

Stretch Stretching consists of pulling on the textile at a spe-
cific location. It affords elastic input as the textile retracts

Session: Phones & Watches UIST 2017, Oct. 22–25, 2017, Québec City, Canada

570



when released. We use the metaphor of turntable control,
where stretching controls playback speed in our media player.
Stretching it towards the user increases the speed, while pulling
it away decreases the speed.

Bend Bending of the elbow is an example of the implicit
sensing that is possible with our technique. As this motion is
part of the user’s natural movement, we would need to use a
disambiguating mechanism, e.g., pressure or combination with
another gesture, to activate it if used as an explicit command.
Another opportunity is to use it as implicit input. For our media
player, we have explored using the bending that occurs from
arm swinging while running as a way to detect the appropriate
tempo for the music playlist.

Most of our gestures, can be recognized at different sensor
locations and on different parts of the anatomy (e.g., forearm,
elbow, upper arm). Some gestures are naturally limited by
mechanical, ergonomic or physical constraints. For example,
gestures like Push, Fold, Twirl and Stretch are performed at
the end of the sleeve. Gestures like Bend or Twist are limited
to the user’s physical abilities.

These examples illustrate how 2D surface gestures, 2.5D defor-
mation gestures, and the three continuous properties (location,
direction, pressure) have the opportunity to greatly expand
the opportunities for linking and mapping information while
taking into account nuanced properties, such as, recency and
importance [65, 20].

HYBRID GESTURE DETECTION ALGORITHM
Our novel algorithm addresses the challenges of learning-
based methods that need extensive training and extraction
of hand-crafted features for class-label prediction. To alle-
viate these issues, we combine the results from the trained
model with a heuristic-based approach that relies on a set of
rules. Heuristic-based models provide a unique capability to
react to untrained classes. So, we can train a much smaller
set of trained gestures and achieve a wide variety of different
interactions.

Gesture

Classifier

Heuristics
Feature 
ExtractionPreprocessRaw Data Force Image

Figure 6: The SmartSleeve gesture detection pipeline is
based on six steps.

Figure 6 presents the entire SmartSleeve gesture detection
pipeline. Our approach has some similarities with the method
used in GravitySpace [3]. Similarly, we reduce a 3D prob-
lem to a 2D problem by constructing a force image using the
raw sensor matrix data. Next, we construct a force image
with a size of 24 × 15 px with an overall framerate of 30
fps. Our algorithm is training a classifier on a per-frame-basis.
Similar to the approach Type-Hover-Swipe [60], we have de-
veloped a simple filter, which averages the current sample with
the previous ten samples to handle the false deformations on
the SmartSleeve. Consequently, we can stabilize the natural
tremor of hands and obtain temporal information. In addition,
we leverage our continuous gesture tracking mechanism for di-

rectional information. Particularly, we incorporate the results
from learning-based algorithm and heuristic-based approach
to reduce the training of gestures by half as well as decrease
computationally expensive feature extraction.

Preprocessing and Feature Extraction Initially, we convert
the raw sensor data to a grayscale force image. By apply-
ing a threshold we remove the noise. Further, we specify the
foreground and background on an individual pixel to search
for points of interest, which in turn results in the loss of the
pressure information. However, this information is later re-
covered by calculating the average force from the raw sensor
data, once the Region of Interest (RoI) is located. In the next
step, we apply bilinear upscaling and a Gaussian filtering for
smoothing the raw force image. The RoI is selected as a mask
inside the bounding box using the blob detection model. We
use the contour detection algorithm [9], which makes the ges-
ture classification space invariant. The removal of the pressure
information from the force image yielded significant improve-
ments in terms of classification accuracy during an informal
pre-study with different users. Additionally, it helps us reduc-
ing the number of training trials, as the processed images for
feature extraction appear similar even when the applied force
changes up to a certain limit for a particular gesture during the
training phase.

As all the regions are highly discriminative (see Figure 7), we
only compute a simple histogram and a set of properties of
the contour’s bounding box, including height, width, area, and
perimeter, as features for the classification without any further
processing.

Classifying gestures based on image analysis In order to
identify the gestures, we took a subset from Figure 5 based
on their variances, namely Finger, Hand, Bend, Twist, Push,
Grasp, Stretch, Twirl, and Fold. We experimented using the
image features which we extracted above for these nine ges-
tures as input to different classifiers and found that a Support
Vector Machine (SVM) yields the most promising results, with
parameters C = 1.0 and kernel = RBF, optimized using a grid
search with cross-validation implementation provided by the
scikit-learn [39] machine learning library. The model assigns
probabilities for each type of trained gesture.

Detecting untrained gestures using heuristics We extend our
frame-by-frame learning-based algorithm for recognizing dy-
namic (untrained) gestures by adding a set of rules based on
the classifier generated probability distribution. This idea is in-
spired by the Pose Recognition technique used in GravitySpace
[3]. In our implementation, we combine the highest probabil-
ity with net force and properties of the blob (position and size)
to produce more gestures (finger swipe up, down, left, right,
and rub; hand swipe up, down, left, right, and rub; spread;
close; shake). As mentioned earlier, we deduce the normalized
force from the raw sensor data within a blob and our frame
averaging helps us to track the blob within successive image
frames.

Specifically, to identify the direction (up, down, left, or right)
of the gesture, we simply store the consecutive blob’s centroid
coordinates in a buffer and compute the slope through each pair
of points. Additionally, we implemented a consistency check
algorithm to overcome the accidental deviations in slope val-
ues since a user might not be able to draw a straight line (e.g.,
left to right gesture) and the slope might have some unintended
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Figure 7: Training input frames after preprocessing.

motions, which can be interpreted as an up- or down-gesture.
We fix this problem by splitting the whole gesture into over-
lapping regions and further ignore small deviations.
Probability distributions of grasp and hand from the classifier
help determine shake and rub respectively, the blob’s cen-
troid coordinates change significantly during rub and shake,
cf. Figure 8, (a) and (b) compared to other gestures, we use
the concept of first order derivative from calculus to compute
this rate of change, since the obtained value is scalar, we make
it absolute and take an average on a finite size to avoid false
positives. Gestures including spread and close exploit the
classification probability of finger combined with the linear
change in area of contour (see Figure 8 (c) and (d), we measure
the trend of increment or decrement with simple subtraction
between pairs of consecutive area values. Afterwards, we as-
sess the average to determine the action robustly wherein a
positive value signifies expansion, and vice versa.
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Figure 8: Change in contour’s centroid during rub and shake
(a, b), and change in area of the bounding box while per-
forming spread and pinch over time (c, d).

Summarizing, our real-time recognition pipeline provides con-
tinuous gesture detection. In particular, if we attempt a swipe
gesture, we have an additional component of changing pres-
sure along the line. This feature allows us an additional input
modality and could be used for controlling speed in activities
like fast forward in a media player.
EVALUATION
Two empirical studies were conducted to evaluate our hybrid
gesture detection algorithm. In the first experiment, we eval-
uated the learning based algorithm and we were primarily

interested in finding out if the trained gesture set would also be
position-invariant. On the other side, in the second experiment,
we were focusing on the evaluation of the heuristic approach,
where we wanted to find out if the heuristics we implemented
will help to enrich the set of gestures while training only a
subset of gestures.

Participants
Six unpaid volunteers (3 female), 23-25 years old (x̄ = 24.33,
SD = 0.94), all right-handed were recruited from the local
university. All participants used 2D touch interfaces on a daily
base, but none of them had experiences with smart clothing
interfaces.

Apparatus
The study was conducted in a quiet room, where the par-
ticipants were wearing the SmartSleeve tightly fitted as de-
picted in Figure 9. The instructions were displayed on LG 24′′

1920 × 1200 pixel IPS LCD screen.

Figure 9: Apparatus used in both experiments consisted of
the participant-worn SmartSleeve and a screen were ges-
tures, instructions and feedback were displayed.

Experiment 1: Position-invariant Gesture Recognition
In the first experiment, we performed a gesture recognition
experiment, where we wanted to find out if our approach also
provides good accuracy results even if the gestures have to be
performed on different locations of the textile.
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Design At the beginning of the experiment, the nine different
gesture types (i.e., Finger, Hand, Twist, Bend, Stretch, Fold,
Push, Grasp, Twirl) were demonstrated to participants for
clarity. Thereafter, participants were instructed to perform
four trials of each gesture type in randomized order to train the
gesture recognition engine. The four trials had to be performed
on the same location, which was marked accordingly. The
training phase took approx. 15 minutes. Next, participants
were asked again to perform eight trials of each gesture type
on the (a) same location (marked position) as well as on (b) an
arbitrary. The order of the gesture type was randomized and
presented accordingly on the on-screen prompts (see Figure 9).
The on-screen prompt further showed whether the gesture was
recognized correctly or wrongly. The testing phase took about
35 minutes per participant. Collected measurements included
error rate.

Twist Bend Stretch Fold Push Grasp Twirl

Twist

Bend

Stretch

Fold

Push

Grasp

Twirl

1.
0
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0

Finger Hand

Finger

Hand

Figure 10: The standard confusion matrix for the Smart-
Sleeve hardware using the same location.

Results Our approached reached an average accuracy of
92.0% when the system is trained and tested by the same
participant on the same location, cf. Figure 10. Similar results
have been achieved when the system is trained and tested by
the same participant on different location with an average of
86.9%, cf. Figure 11.

In more detail, the finger gesture achieved an average recog-
nition rate of 96.4% (SD = .05), 100% (SD = 0.0) for the
bend gestures, and 83.6% (SD = .167) for the twirl gestures.
Using different locations, an average recognition rate of 92.6%
(SD = .121) for the finger gestures, 98.0% (SD = .05)
for the bend gestures, and 80.0% (SD = .244) for the twirl
gestures was achieved.

A repeated measures ANOVA was carried out and revealed
a significant effect for the location (F1,35 = 6.019; p < .05)
as well as gestures (F8,35 = 5.865; p < .001). Finally, post-
hoc analyses on the main effects were conducted based on
paired-samples t-tests using the Holms sequential Bonferroni
approach. However, no significant differences could be found.
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Figure 11: The standard confusion matrix for the Smart-
Sleeve hardware using an arbitrary location on the arm cho-
sen by the participants.

Experiment 2: Testing the heuristics approach
In the second experiment, we evaluated the performance of
the heuristics of the gestures using the parameters pressure,
location and direction. We therefore wanted to find out if we
are able to recognize more complex gestures, which are based
on simple ones.

Design We evaluated the recognition implementation with
the same participants. As all the used gestures were based on
the gestures described before, no training data was required
for this evaluation. Again, we showed each new gesture on a
screen and the participant performed it accordingly.

For the second experiment, we chose a subset of the gesture
classes (i.e., Finger, Hand, and Grasp), as all of them are
making use of all the used parameters (pressure, location and
direction), cf. Figure 5. Every participant performed each
gesture 5 times in total, resulting in an overall of 80 trials
per participant. For the gesture class Finger, for instance,
participants had to perform the gestures swipe right, swipe
left, swipe up, swipe down, rub, spread, and close with the
index finger on an arbitrary location of the SmartSleeve. The
same gestures were performed using the Hand gesture class.
Finally, participants also grasped and shaked the sleeve. All
the gestures were counterbalanced to avoid training effects.

Results Overall, 84% (SD = 0.11) of all gestures were cor-
rectly identified. In more detail, the simple gesture detection
(swipe right, swipe left, swipe up, swipe down) using the finger
achieved an average recognition rate of 83% (SD = .06),
while we achieved 97% for the spread gesture. Only most
complex deformation gestures, like the shake achieved a lower
average recognition rate of 73%.

Technical Evaluation
To evaluate the pressure sensing behaviour of the sensor we
conducted a technical study, where we applied mechanical
stress onto the surface of the SmartSleeve sensor.
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Apparatus The sensor got stationary mounted onto a flat
deformable Styrofoam surface. A hemispherical thrust plate
with a 4 mm diameter applied mechanical stress onto the
surface of the sensor. The resistance change of the sensor was
measured 10 times with a force of 25 g, 50 g, 75 g, 100 g, 250
g, 500 g, 1000 g.

Results As shown in Figure 12, the sensor demonstrate promis-
ing sensing behaviors from 50 g to 500 g. Underneath 50 g
the sensor demonstrates high resistance changes as expected,
however according to the loose stacking of the sensor the stan-
dard deviation is high. Beyond 500 g the resistance of the
sensor shows slight changes, therefore disregard this area in
SmartSleeve as well.
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Figure 12: Pressure Sensing under different stress levels.

DISCUSSION & LIMITATIONS
The SmartSleeve was trained and tested for a period of four
months in total. During that time, the sensor was used approxi-
mately 120 sessions by several people who also provided early
feedback.

Durability
We observed that the sensor signal did not change significantly
even under different pressure conditions. Regarding the con-
nections, we implemented two versions. The first version of
our sensor had a rough rigid connection using flat ribbon cables
(2.54 mm pitch) connecting the sensor PCB board with the tex-
tile. The connections of this prototype broke relatively easily,
as the cable was stiff and heavy and the soldering spots were
comparably small. Further, having this rigid soldered connec-
tion directly on the sleeve leads to breaks, while performing
a highly deformable gesture activity. The second version of
SmartSleeve with the new sewn connection (as introduced in
this paper) was then tested for approximately three months.
During that time, the sleeve was used more than 100 times
by different participants. Only three smaller issues had to be
fixed.

Pressure Input
As the results of the evaluation show, SmartSleeve accurately
recognizes 2D gestures (surface gestures) as well as 2.5D
deformation-based gestures (deformation gestures) that are
performed on the textile. Even though our algorithm takes
advantage of pressure to detect 2.5D gestures, we have not
evaluated the pressure itself for surface gestures. The high
pressure resolution of the sensor could be used for enhancing
surface gestures. Yet, as noted by Rendl et al. [44], pressure
is a very subjective property and its perception differs from
person to person. Therefore, we did not formally evaluate this
aspect in this paper.

False Positives
The evaluation and exploration of the sleeve show that elbow
movements (bending) can result in false positives and lower
accuracy, while flexion and extension of shoulder or wrist have
no significant influence. Surface gestures are more prone to
false activations, given that the more specific deformations
occur less frequently than accidental touches.
Three-layer Approach
While the three-layer approach is a practical solution for a
tactile sensor that measures signals via a resistive approach, it
was problematic in a few instances when the user grasped only
the top layer for performing a gesture. Moreover, a three-layer
sandwich is thicker, decreases the comfort of use and needs
more implementation effort. We are currently developing a
one-layer solution to address these limitations.
Tailored Clothing
SmartSleeve is tailored for a person having a wrist perimeter of
16 cm, an elbow perimeter of 26 cm and an upper arm perime-
ter of 26.5 cm. Although all three layers are bidirectionally
stretchable, observations with other participants have shown
that the sleeve itself has to fit tightly, as it has to follow the
rotation of the arm. If only the upper arm and elbow are fitting
well, but the sleeve itself is loose on the lower arm, people
can rotate the underarm inside the sleeve, which could lead
to reduced accuracy. Generally, as SmartSleeve is a personal
wearable, it should be tailored for each individual person to
enable rich input on clothes.
CONCLUSIONS AND FUTURE WORK
We introduced SmartSleeve, a flexible textile sensor that senses
both surface gestures and deformation gestures in real-time.
We provided a detailed description of our hybrid gesture detec-
tion pipeline that uses learning-based algorithms and heuristics
to enable real-time gesture detection and tracking. Its mod-
ular architecture, combined with a large sensor size, a high
spatial resolution and a high pressure resolution, allowed us to
derive new gestures through the combination with continuous
properties like pressure, location, and direction. Finally, we
reported on the promising results from our evaluations which
demonstrated real-time classification of 9 gestures with 89.5%
accuracy.
In future work, we plan improvements to our SmartSleeve hard-
ware, as the current proof-of-concept implementation relies on
a wired PC connection for data transmission and power supply.
Given the current hardware’s dimensions (102× 53× 25mm),
miniaturization of the electronics would allow us to embed it
in the textile. Therefore, we are developing a version, which
is completely mobile with wireless connectivity. Additionally,
we are working on a single-layer textile sensor implementa-
tion and developing the algorithm on a hardware level. We
also want to explore how SmartSleeve performs in everyday
scenarios and how environmental influences, like humidity,
affect the sensor. Our initial experiments show that the sen-
sor withstands machine washing at low temperature and slow
spin, however, more formal evaluations should be performed
to assess its durability.
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