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ABSTRACT

In this case study, we discuss how an implanted magnet can sup-
port novel forms of input and output. By measuring the relative
position between the magnet and an on-body device, local posi-
tion of the device can be used for input. Electromagnetic fields can
actuate the magnet to provide output by means of in-vivo haptic
feedback. Traditional tracking options would struggle tracking the
input methods we suggest, and the in-vivo sensations of vibration
provided as output differ from the experience of vibrations applied
externally — our data suggests that in-vivo vibrations are mediated
by different receptors than external vibration. As the magnet can
be easily tracked as well as actuated it provides opportunities for
encoding information as material experiences.

CCS CONCEPTS

+ Human-centered computing — Human computer interac-
tion (HCI).
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1 INTRODUCTION

A magnetic implant can be used to enable input to and output in
ways which otherwise would be difficult or impossible to achieve.
After briefly surveying related work, we discuss new input and
output opportunities afforded by a magnetic implant!.

Implanted devices are not a new idea. Novels such as Gibson’s
Neuromancer popularized the concept in the early 1980’s. Here,
implants augment perception and abilities as well as providing
users with access to information. These fictional implants of the

L This paper is not meant as an endorsement for implanting magnets. The first author had the magnet
implanted in 2012, no in-vivo procedures were conducted for this paper.
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Figure 1: X-ray of the first author’s hand, palm facing the
reader. The magnet is visible in white, located in the fatty
tissue above the bone.

past were interactive augmentations of our bodies, superseding
bodily abilities and at the forefront of our attention. This vision
did not become reality. Though implants permeate bodies in the
form of stents, pacemakers, or medical delivery systems, they are
at the background of our attention. Today’s implants are rarely
interactive. Instead, the world around us has become more interac-
tive, devices smart and responsive, and the use cases for interactive
implants increasingly less obvious. The gritty future of hacked bod-
ies is replaced by a present which provides interactivity without
penetrating the skin.

However, there are trends in HCI which suggest that we should -
once again — consider the body more, exemplified by series of work-
shops which explore merging bodies with technology [4, 13, 20]
and discussion on Human-Computer Integration [21]. Concurrently,
DIY [2] and body-modification communities [29] have continued
exploring these ideas with functioning prototypes and basic im-
planted devices such as magnets [27] or RFID chips [8]. It seems
prudent, then, to revisit the subject matter of implants.

We do so by (1) proposing implanted magnets used as local an-
chors for on-body positioning, providing new opportunities for
body-centric interactions with wearable devices, and (2) highlight-
ing that vibrotactile feedback provided by an implanted magnet
is experienced differently from vibrotactile feedback applied ex-
ternally, extending the potential bandwidth of haptic information
transfer.

2 RELATED WORK

There is a small body of work which has explored implanted inter-
faces, however, devices which were actually implanted, typically
do not take advantage of their unique placement with regards to


https://doi.org/10.1145/3384657.3384785
https://doi.org/10.1145/3384657.3384785

AHs ’20, March 16-17, 2020, Kaiserslautern, Germany

interaction. Instead, designers have opted for communicating with
implanted devices through mobile phones or other proxy devices
[2]. Implanted devices could, however, be directly interacted with.
Holz et al. [12] demonstrated that, theoretically, implanted devices
could provide a broad variety of input options, however their work
does not consider biocompatability.

Implanted devices have also been used for measuring neural
activity, for example, by inserting sensing-meshes between the
skull and the brain, to collect high-definition real time information
of neural activities. Typically, such systems however are deployed
to collect data which is later analyzed post-hoc, not affording any
real time interaction [6]. An interesting twist to the ‘implanted’
genre are devices which are swallowed, as demonstrated by Stelarc
[26] and more recently by Li et al. [18]. However, the device by
Stelarc was intended to be viewed with medical imagery devices,
while the device by Li et al. is interacted with through a smart-
phone app. Again, neither device takes advantage of its in-vivo
position in terms of novel interactions.

While a range of in-vivo devices exist, the question of how one
might use such devices for novel interaction is still largely unan-
swered. A simple implant, which can easily support novel interac-
tions is a magnet (see also Heffernan et al. [11]). Such an implanted
magnet has no active parts which require power or control, and
can provide input to magnetic tracking systems, and can be provide
the user with in-vivo haptic stimuli.

The potential for novel interactions using an implanted magnet
should be obvious, when looking at the plethora of HCI prototypes
which currently improve their input abilities using a magnet [1, 9,
19] and the common use of solenoid style actuators for providing
haptic feedback [16, 24, 28].

3 SYSTEM COMPONENTS

The interactions presented use a wearable device, augmented with
Magnetips, and an implanted magnet:

Magnetips: The hardware used was previously published as Mag-
netips — a system which could track and actuate a magnet remotely
[19]. Magnetips was in part inspired by prototypes built to vibrate
the magnetic implant of the first author. The interest in tracking
the location of the magnet originated in part from the wish to do
local on-body position tracking of devices relative to the implant’s
location. Here we extend upon our previous work by discussing
how magnetips interacts with an implanted devices.

Implanted Magnet: The first author of this paper has a magnet
implanted in the palm of their left hand (see Figure 1). The magnet
is a neodymium magnet approximately 2mm in diameter and 4mm
length. The magnet is coated with Parylene C. The position was
chosen as it is relatively well protected by fatty tissue, and not
likely to significantly interfere with equipment which is sensitive
to magnetism. The palm is also an area of the hand with relatively
strong sensory innervation. While the fingertip would offer even
stronger innervation [14], positioning the magnet there has the
potential to interfere with activities such as climbing, or calibrating
equipment sensitive to magnetism.

The interactions presented use a smartwatch as a familiar exam-
ple. The Magnetips system, however, might instead be embedded
in garments [5] or jewelry [22], or might be used as guidance and
interaction system for epidermal robots roaming the body [3].
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Figure 2: The position of the smartwatch can be inferred
by its distance to the implanted magnet. Here, positions are
mapped to applications. Close to the wrist, the smartwatch
displays the time, when moved away from the wrist the dis-
play switches to a map. This can also be used for continu-
ous input. For example, the user might hold the watch-face
steady while rotating their hand to scroll through a list.

4 INPUT

Magnetips enables tracking of a magnet attached to the user’s
fingernail. Instead of using the system to interact with a magnet
attached to a fingernail [19], Magnetips can also be used to interact
with an implanted magnet. Depending on how the Magnetips sys-
tem is attached to the body, different types of interaction become
possible:

4.1 (a) Device Manipulations

If the wearable device is loosely fit around the body, the magnet can
be used as an anchor-point for detecting local on-body position of
the wearable device. This can enable a user to change the device’s
position or orientation as an input-method. For example sliding the
device up or down the wrist (see Figure 2), or rotating it around
the wrist.

Rotation based interactions might be captured using an Inertial
Measurement Units (IMU), however, an IMU cannot distinguish
between a rotation of the users arm together with the device, and
rotating the device while the arm remains stationary. Additionally,
translation (for example moving a bracelet towards or away from
the wrist) would be hard to capture with an IMU at all. In Figure
2, a user selects applications based on the devices position on the
arm. Position is inferred by the distance to the magnet.

Angle between \ Magnet
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Figure 3: If the smartwatch is in a fixed position, any change
in direction of the magnet can be attributed to hand move-
ment. This enables robust gestural interaction. Here the user
has applications mapped to hand-poses. A user switching
from a time-telling to map application, based on wrist-angle.
Continuous movement might also be used for continuous
control, such as volume adjustment.
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Figure 4: (a) Vibration detection thresholds by Verillo [32], yellow line shows the intensity of vibration required for it to be
perceived. (b) Magnitude estimation study by McIntosh et al. [19], red lines show estimates of perceived strength of vibration,
blue line represents the mean. (c) Replication of the experiment conducted by McIntosh et al. but with single participant and
an implanted magnet. Green dots show estimated magnitudes, green line shows polynomial function fit to the data.

4.2 (b) Body Movements

If Magnetips is in a known position (for example by being firmly
connected to a body-part) all measured movement of the magnet can
be attributed to movements of the body. For example, if Magnetips
is firmly attached to the wrist, and the magnet is implanted in the
users hand, all motion of the magnet must be caused by motion
of the users hand. This can be used to support gestural input. In
Figure 3 the user selects applications based on wrist angle. Wrist
angle is inferred based on the direction of the magnet.

4.3 (c) Mixed Body-Centric Interactions

Magnetips also has an IMU, so it can detect its own movements. In
sum — given the position of the first authors implant — Magnetips
can distinguish between three scenarios. If the smartwatch moves,
but the magnet remains in a fixed relative position, we can infer
movement of the arm. If the smartwatch moves and the magnet
performs the opposite relative motion, we can infer movement of
the device. Finally, if the smartwatch is stationary, but the magnet
moves, we can infer movement of the hand. This allows combining
arm movements, wrist movements and device manipulation, pro-
viding a rich space for body-relative interactions, which otherwise
would be difficult to achieve.

5 OUTPUT

Magnetips can also actuate a magnet remotely — be it an external or
implanted magnet. Previous work has already suggested that users
are more sensitive to in-vivo vibrations, and has speculated that
the mediation methods between the two types of stimulation might
differ [10]. We extend upon this work by exploring the experience
of in-vivo vibration over a wider frequency range.

Sections 5.1 and 5.2 present two experiments which were con-
ducted by the second author with the first author as participant.
The first author had no information regarding order of conditions,
and was not aware of the parameters of the stimuli he felt. It should
be pointed out that within psycho-physics, such single-participant
experiments are not uncommon for establishing relations between
physical stimulus and experienced sensation [7]. Single participant
case-studies are also common within HCI (see also Lazar et al.,
Chapter 7 [17]). For better comparison of results, we use the same
hardware and software which was used in the evaluation of Mag-
netips [19]. The experiments were conducted two years ago out
of pure curiosity, at the time we did not expect these results and
had no intention of writing this paper, so there was no particular
desired outcome which might have biased the results.

5.1 Surprising Observations

In this section we compare results from three experiments: (a)
measures of human sensitivity to vibration by Verillo [32] (Figure
4a), (b) our prior magnitude estimation study using Magnetips [19]
(Figure 4b — overall average in blue, 10 individual participants in
red), and (c) replication of the experiment conducted by McIntosh
et al. but with an implanted magnet (Figure 4c). A summary of these
studies can be found in Table 1.

Verillo found that the frequency which required the minimum
amplitude to be perceived was at ~250 Hz. For higher or lower
frequencies, participants required a higher amplitude to perceive
the vibrations (Figure 4a) [32]. In the Magnetips study we asked
participants to report the perceived magnitude of a stimulus at
varying frequency (Figure 4b). We expected to find a result nega-
tively correlated to the data provided by Verillo, which we did. The
reported magnitudes in the Magnetips study largely corresponds
to the detection thresholds observed by Verillo. There appears to
be a discrepancy in the peak of the two signals (250 Hz and 33 Hz
respectively). This could be due to measurement error or idiosyn-
crasies of the Magnetips system. It should be noted that a result
which correlates perfectly with the data by Verillo [32] would not
be significantly different from our data at p < 0.05 (see [19]).

Verillo [33] later showed that his measures correspond closely
to direct cell readings of Pacinian Corpuscles obtained by Sato [25].
It can be assumed that the vibrations created using Magnetips are
also mediated by Pacinian Corpuscles, though an explanation for
the discrepancy in peak sensitivity requires further investigation.

We repeated the magnitude estimation task presented in Mag-
netips [19], with the first author, who has an implanted magnet, as
sole participant (Figure 4c). We found similar effects of duration as
before, but the effects of frequency were markedly different. We
plot raw response scores as green circles and — as we would expect
to find a polynomial function — we superimposed the best fitting
polynomial function of second degree on our results (Figure 4c).
In the high frequency areas — above ~300 Hz— the results are as
expected, corresponding both to the experiment by McIntosh (Fig-
ure 4b [19]) and with what we would expect based on detection

‘ Method  Vibration Participant #
(a) Verillo [32] External
Magnitud
(b) McIntosh [19] Esi;gmn;tlilorel External
. Magnitud
(c) Present Studies Es?;gmn;tlil 0161

Table 1: Overview of studies (studies b and ¢ used the same
experimental hardware and software).
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Figure 5: Magnitude estimation of in-vivo vibration: (a) estimates of perceived strength, (b) estimates of perceived sharpness
and (c) estimates of perceived deformation. Each point represents one estimate, solid lines are the polynomial function which
best fits the recorded data. Expected sensitivity to vibration added yellow for reference (the inverse of detection thresholds

reported by Verillo [32]).

thresholds (Figure 4a [32]). However, for low frequencies — below
250 Hz- the perceived intensity increased, which is surprising.

5.2 Experiencing In-Vivo Vibration

As the relatively high strength of low frequency vibration was
unexpected, we conducted further, informal tests with a wider pa-
rameter range and different pulse durations. We found that varying
the frequency created qualitatively distinct experiences. While de-
scribing these beyond that they are distinct is difficult, some of
these experiences felt sharp, while others felt less like vibration
and more as if something were pulling or pushing. To see if the
unexpected effect of frequency was consistent, and to gain insight
on the qualitative experience, we repeated the experiment. This
time we tested a wider range of frequencies (16 Hz, 32 Hz, 56 Hz,
88 Hz, 128 Hz, 176 Hz, 232 Hz, 296 Hz, 368 Hz, 448 Hz) but only a
single level of pulse duration (1200 ms). We chose the frequency
levels so that the differences between the stimuli were a geometric
series, and so they covered the range we were most interested in.
Stimulus order was randomized and each frequency was presented
four times. The entire procedure was repeated three times, once
for perceived strength, once for perceived sharpness and once for
perceived deformation (experience of pulling or pushing).

The results are plotted in Figure 5a. Raw estimates are indicated
as green circles and the best fitting polynomial function of second
degree as a solid green curves. The expected response curve for
perceived strength, based on the inverse of detection thresholds
established by Verillo [32], is indicated in yellow.

We found that, again, the perceived strength is strongest for low
frequencies, below 250 Hz (Figure 5a). This is surprising, as we ex-
pected the experienced strength to drop off similarly below 250 Hz
as it does above 250 Hz (indicated in yellow). One might argue that
there is an observed peak at 88 Hz and then a slight decline below
that, but further experimentation is required for stating this with
any certainty. This result is at odds with the Magnetips study (see
also Figure 4b) [19] and to what one would expect based on detec-
tion threshold alone (Figure 4a) [32], but consistent with our initial
experiment using the implant (Figure 4c).

The experience of sharpness (Figure 5b) had a very slight posi-
tive correlation with frequency, similar to previous studies which
related frequency to sharpness [30]. The experience of deformation
(Figure 5c) was strongest at low frequencies (~100 Hz and lower)
and decreased at higher frequencies. We assume that this experi-
ence might be the reason that the overall magnitude estimation
results for the implanted magnet differ so strongly from what we

expected to find. There is a strong difference in quality of experi-
ence below ~100 Hz (high deformation, low sharpness) compared
to above 100 Hz (low deformation, high sharpness).

5.3 Discussion of Haptics Explorations

The difference between the results found in the in-vivo study and
the previous study by McIntosh et al. [19] might be attributed to the
location of the stimulation. The study by McIntosh stimulated the
fingernail, while here the stimulation occurred in the palm of the
hand. The study by Verillo [32], however, also stimulated the palm
of the hand, which makes this explanation unlikely. One might also
argue that the deformation experience might be explained by the
magnet literally being pushed and pulled. While this explanation
is possible, we also find it unlikely as the stimulation mechanism
was the same as used by McIntosh et al. [19]. Also the experience
of deformation was not of a rapid pushing and pulling, but rather a
slow, continuous sensation.

While the data is too preliminary to draw any strong conclu-
sions beyond the observation that the results are unexpected, a
reasonable argument can be made for the in-vivo magnet stim-
ulating receptors differently to externally applied vibration: The
sensitivity of Pacinian cells, which are usually associated with the
perception of textures and vibration, peaks between ~250 Hz and
~300Hz and decreases linearly above and below that [14]. This
aligns with the measures by Verillo [32, 33] and the results of the
study by McIntosh et al. [19]. Meissner Corpuscles are responsive to
lower frequency vibration from ~5 Hz to ~50 Hz (sometimes also
referred to as flutter-vibration [31]). They are similar in structure
to Pacinian Corpuscles and typically associated with the perception
of fine surface features, edges and contours [14]. The observed
results would make sense if in-vivo vibrations were more strongly
mediated by Meissner corpuscles than externally applied vibrations.

6 TOWARDS FUTURE APPLICATIONS

The implanted magnet provides opportunities beyond body-relative
input and corresponding vibrotactile feedback. Co-located sensing
and actuation is promising for conveying a variety of material expe-
riences: recent explorations of haptic experiences such as textures
[24], compliance [15], abstract mid-air sensations [28], or concrete
mediated forces, such as penetrating a drop of water with a needle
[23], not only rely on precise haptic actuation, but in same parts
require precise tracking of human actions. If we wish to extend the
humans perceptive horizon by providing information we usually
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do not experience directly, such as the presence of a WiFi signal
or the passing of time, we could use similar schemes for encoding
this information. Such encoding would require both measurement
of movements, and precise actuation which can be achieved using
the implanted magnet.

In anecdotal reports of sensations conveyed through implanted
magnets, it is often highlighted that it takes weeks or even months
before users can correctly interpret the sensations created when
the magnet is stimulated by arbitrary electromagnetic fields in ones
environment [11, 27]. This highlights that the permanent placement
of the magnet might support the user in creating a mental model
for interpreting the sensation.

7 CONCLUSION

We have demonstrated that an implanted magnet can provide input
opportunities for HCI which are difficult or impossible to achieve
using more traditional means such as an IMU. In terms of output
provided through the implanted magnet, the clear qualitative dif-
ferences between external and in-vivo vibration might potentially
be leveraged to provide a wider bandwidth of haptic information
to a user. The experienced strength of of low-frequency in-vivo
vibration invites further investigation.
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